Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

261 lines
8.2 KiB

*> \brief \b CHET22
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
* V, LDV, TAU, WORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
* ..
* .. Array Arguments ..
* REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
* COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
* $ V( LDV, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHET22 generally checks a decomposition of the form
*>
*> A U = U S
*>
*> where A is complex Hermitian, the columns of U are orthonormal,
*> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
*> KBAND=1). If ITYPE=1, then U is represented as a dense matrix,
*> otherwise the U is expressed as a product of Householder
*> transformations, whose vectors are stored in the array "V" and
*> whose scaling constants are in "TAU"; we shall use the letter
*> "V" to refer to the product of Householder transformations
*> (which should be equal to U).
*>
*> Specifically, if ITYPE=1, then:
*>
*> RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and
*> RESULT(2) = | I - U**H U | / ( m ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> ITYPE INTEGER
*> Specifies the type of tests to be performed.
*> 1: U expressed as a dense orthogonal matrix:
*> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
*> RESULT(2) = | I - U U**H | / ( n ulp )
*>
*> UPLO CHARACTER
*> If UPLO='U', the upper triangle of A will be used and the
*> (strictly) lower triangle will not be referenced. If
*> UPLO='L', the lower triangle of A will be used and the
*> (strictly) upper triangle will not be referenced.
*> Not modified.
*>
*> N INTEGER
*> The size of the matrix. If it is zero, CHET22 does nothing.
*> It must be at least zero.
*> Not modified.
*>
*> M INTEGER
*> The number of columns of U. If it is zero, CHET22 does
*> nothing. It must be at least zero.
*> Not modified.
*>
*> KBAND INTEGER
*> The bandwidth of the matrix. It may only be zero or one.
*> If zero, then S is diagonal, and E is not referenced. If
*> one, then S is symmetric tri-diagonal.
*> Not modified.
*>
*> A COMPLEX array, dimension (LDA , N)
*> The original (unfactored) matrix. It is assumed to be
*> symmetric, and only the upper (UPLO='U') or only the lower
*> (UPLO='L') will be referenced.
*> Not modified.
*>
*> LDA INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least N.
*> Not modified.
*>
*> D REAL array, dimension (N)
*> The diagonal of the (symmetric tri-) diagonal matrix.
*> Not modified.
*>
*> E REAL array, dimension (N)
*> The off-diagonal of the (symmetric tri-) diagonal matrix.
*> E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
*> Not referenced if KBAND=0.
*> Not modified.
*>
*> U COMPLEX array, dimension (LDU, N)
*> If ITYPE=1, this contains the orthogonal matrix in
*> the decomposition, expressed as a dense matrix.
*> Not modified.
*>
*> LDU INTEGER
*> The leading dimension of U. LDU must be at least N and
*> at least 1.
*> Not modified.
*>
*> V COMPLEX array, dimension (LDV, N)
*> If ITYPE=2 or 3, the lower triangle of this array contains
*> the Householder vectors used to describe the orthogonal
*> matrix in the decomposition. If ITYPE=1, then it is not
*> referenced.
*> Not modified.
*>
*> LDV INTEGER
*> The leading dimension of V. LDV must be at least N and
*> at least 1.
*> Not modified.
*>
*> TAU COMPLEX array, dimension (N)
*> If ITYPE >= 2, then TAU(j) is the scalar factor of
*> v(j) v(j)**H in the Householder transformation H(j) of
*> the product U = H(1)...H(n-2)
*> If ITYPE < 2, then TAU is not referenced.
*> Not modified.
*>
*> WORK COMPLEX array, dimension (2*N**2)
*> Workspace.
*> Modified.
*>
*> RWORK REAL array, dimension (N)
*> Workspace.
*> Modified.
*>
*> RESULT REAL array, dimension (2)
*> The values computed by the two tests described above. The
*> values are currently limited to 1/ulp, to avoid overflow.
*> RESULT(1) is always modified. RESULT(2) is modified only
*> if LDU is at least N.
*> Modified.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
$ V, LDV, TAU, WORK, RWORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER ITYPE, KBAND, LDA, LDU, LDV, M, N
* ..
* .. Array Arguments ..
REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
$ V( LDV, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
$ CONE = ( 1.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
INTEGER J, JJ, JJ1, JJ2, NN, NNP1
REAL ANORM, ULP, UNFL, WNORM
* ..
* .. External Functions ..
REAL CLANHE, SLAMCH
EXTERNAL CLANHE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CHEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 .OR. M.LE.0 )
$ RETURN
*
UNFL = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Precision' )
*
* Do Test 1
*
* Norm of A:
*
ANORM = MAX( CLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
*
* Compute error matrix:
*
* ITYPE=1: error = U**H A U - S
*
CALL CHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
$ N )
NN = N*N
NNP1 = NN + 1
CALL CGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
$ WORK( NNP1 ), N )
DO 10 J = 1, M
JJ = NN + ( J-1 )*N + J
WORK( JJ ) = WORK( JJ ) - D( J )
10 CONTINUE
IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
DO 20 J = 2, M
JJ1 = NN + ( J-1 )*N + J - 1
JJ2 = NN + ( J-2 )*N + J
WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
20 CONTINUE
END IF
WNORM = CLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute U**H U - I
*
IF( ITYPE.EQ.1 )
$ CALL CUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
$ RESULT( 2 ) )
*
RETURN
*
* End of CHET22
*
END