Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

245 lines
6.7 KiB

*> \brief \b CUNT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CUNT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER ROWCOL
* INTEGER LDU, LWORK, M, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX U( LDU, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CUNT01 checks that the matrix U is unitary by computing the ratio
*>
*> RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
*> or
*> RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*>
*> Alternatively, if there isn't sufficient workspace to form
*> I - U*U' or I - U'*U, the ratio is computed as
*>
*> RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
*> or
*> RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*>
*> where EPS is the machine precision. ROWCOL is used only if m = n;
*> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is
*> assumed to be 'R'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ROWCOL
*> \verbatim
*> ROWCOL is CHARACTER
*> Specifies whether the rows or columns of U should be checked
*> for orthogonality. Used only if M = N.
*> = 'R': Check for orthogonal rows of U
*> = 'C': Check for orthogonal columns of U
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix U.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix U.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is COMPLEX array, dimension (LDU,N)
*> The unitary matrix U. U is checked for orthogonal columns
*> if m > n or if m = n and ROWCOL = 'C'. U is checked for
*> orthogonal rows if m < n or if m = n and ROWCOL = 'R'.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. For best performance, LWORK
*> should be at least N*N if ROWCOL = 'C' or M*M if
*> ROWCOL = 'R', but the test will be done even if LWORK is 0.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (min(M,N))
*> Used only if LWORK is large enough to use the Level 3 BLAS
*> code.
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or
*> RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CUNT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RWORK,
$ RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER ROWCOL
INTEGER LDU, LWORK, M, N
REAL RESID
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX U( LDU, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
CHARACTER TRANSU
INTEGER I, J, K, LDWORK, MNMIN
REAL EPS
COMPLEX TMP, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANSY, SLAMCH
COMPLEX CDOTC
EXTERNAL LSAME, CLANSY, SLAMCH, CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CHERK, CLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, MAX, MIN, REAL
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
RESID = ZERO
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
EPS = SLAMCH( 'Precision' )
IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN
TRANSU = 'N'
K = N
ELSE
TRANSU = 'C'
K = M
END IF
MNMIN = MIN( M, N )
*
IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN
LDWORK = MNMIN
ELSE
LDWORK = 0
END IF
IF( LDWORK.GT.0 ) THEN
*
* Compute I - U*U' or I - U'*U.
*
CALL CLASET( 'Upper', MNMIN, MNMIN, CMPLX( ZERO ),
$ CMPLX( ONE ), WORK, LDWORK )
CALL CHERK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK,
$ LDWORK )
*
* Compute norm( I - U*U' ) / ( K * EPS ) .
*
RESID = CLANSY( '1', 'Upper', MNMIN, WORK, LDWORK, RWORK )
RESID = ( RESID / REAL( K ) ) / EPS
ELSE IF( TRANSU.EQ.'C' ) THEN
*
* Find the maximum element in abs( I - U'*U ) / ( m * EPS )
*
DO 20 J = 1, N
DO 10 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - CDOTC( M, U( 1, I ), 1, U( 1, J ), 1 )
RESID = MAX( RESID, CABS1( TMP ) )
10 CONTINUE
20 CONTINUE
RESID = ( RESID / REAL( M ) ) / EPS
ELSE
*
* Find the maximum element in abs( I - U*U' ) / ( n * EPS )
*
DO 40 J = 1, M
DO 30 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - CDOTC( N, U( J, 1 ), LDU, U( I, 1 ), LDU )
RESID = MAX( RESID, CABS1( TMP ) )
30 CONTINUE
40 CONTINUE
RESID = ( RESID / REAL( N ) ) / EPS
END IF
RETURN
*
* End of CUNT01
*
END