You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
403 lines
12 KiB
403 lines
12 KiB
*> \brief \b DCKCSD
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DCKCSD( NM, MVAL, PVAL, QVAL, NMATS, ISEED, THRESH,
|
|
* MMAX, X, XF, U1, U2, V1T, V2T, THETA, IWORK,
|
|
* WORK, RWORK, NIN, NOUT, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, NIN, NM, NMATS, MMAX, NOUT
|
|
* DOUBLE PRECISION THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), PVAL( * ),
|
|
* $ QVAL( * )
|
|
* DOUBLE PRECISION RWORK( * ), THETA( * )
|
|
* DOUBLE PRECISION U1( * ), U2( * ), V1T( * ), V2T( * ),
|
|
* $ WORK( * ), X( * ), XF( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DCKCSD tests DORCSD:
|
|
*> the CSD for an M-by-M orthogonal matrix X partitioned as
|
|
*> [ X11 X12; X21 X22 ]. X11 is P-by-Q.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NM
|
|
*> \verbatim
|
|
*> NM is INTEGER
|
|
*> The number of values of M contained in the vector MVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MVAL
|
|
*> \verbatim
|
|
*> MVAL is INTEGER array, dimension (NM)
|
|
*> The values of the matrix row dimension M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PVAL
|
|
*> \verbatim
|
|
*> PVAL is INTEGER array, dimension (NM)
|
|
*> The values of the matrix row dimension P.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] QVAL
|
|
*> \verbatim
|
|
*> QVAL is INTEGER array, dimension (NM)
|
|
*> The values of the matrix column dimension Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NMATS
|
|
*> \verbatim
|
|
*> NMATS is INTEGER
|
|
*> The number of matrix types to be tested for each combination
|
|
*> of matrix dimensions. If NMATS >= NTYPES (the maximum
|
|
*> number of matrix types), then all the different types are
|
|
*> generated for testing. If NMATS < NTYPES, another input line
|
|
*> is read to get the numbers of the matrix types to be used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ISEED
|
|
*> \verbatim
|
|
*> ISEED is INTEGER array, dimension (4)
|
|
*> On entry, the seed of the random number generator. The array
|
|
*> elements should be between 0 and 4095, otherwise they will be
|
|
*> reduced mod 4096, and ISEED(4) must be odd.
|
|
*> On exit, the next seed in the random number sequence after
|
|
*> all the test matrices have been generated.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is DOUBLE PRECISION
|
|
*> The threshold value for the test ratios. A result is
|
|
*> included in the output file if RESULT >= THRESH. To have
|
|
*> every test ratio printed, use THRESH = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MMAX
|
|
*> \verbatim
|
|
*> MMAX is INTEGER
|
|
*> The maximum value permitted for M, used in dimensioning the
|
|
*> work arrays.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is DOUBLE PRECISION array, dimension (MMAX*MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XF
|
|
*> \verbatim
|
|
*> XF is DOUBLE PRECISION array, dimension (MMAX*MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U1
|
|
*> \verbatim
|
|
*> U1 is DOUBLE PRECISION array, dimension (MMAX*MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U2
|
|
*> \verbatim
|
|
*> U2 is DOUBLE PRECISION array, dimension (MMAX*MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V1T
|
|
*> \verbatim
|
|
*> V1T is DOUBLE PRECISION array, dimension (MMAX*MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V2T
|
|
*> \verbatim
|
|
*> V2T is DOUBLE PRECISION array, dimension (MMAX*MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] THETA
|
|
*> \verbatim
|
|
*> THETA is DOUBLE PRECISION array, dimension (MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NIN
|
|
*> \verbatim
|
|
*> NIN is INTEGER
|
|
*> The unit number for input.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The unit number for output.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0 : successful exit
|
|
*> > 0 : If DLAROR returns an error code, the absolute value
|
|
*> of it is returned.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DCKCSD( NM, MVAL, PVAL, QVAL, NMATS, ISEED, THRESH,
|
|
$ MMAX, X, XF, U1, U2, V1T, V2T, THETA, IWORK,
|
|
$ WORK, RWORK, NIN, NOUT, INFO )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, NIN, NM, NMATS, MMAX, NOUT
|
|
DOUBLE PRECISION THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), PVAL( * ),
|
|
$ QVAL( * )
|
|
DOUBLE PRECISION RWORK( * ), THETA( * )
|
|
DOUBLE PRECISION U1( * ), U2( * ), V1T( * ), V2T( * ),
|
|
$ WORK( * ), X( * ), XF( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER NTESTS
|
|
PARAMETER ( NTESTS = 15 )
|
|
INTEGER NTYPES
|
|
PARAMETER ( NTYPES = 4 )
|
|
DOUBLE PRECISION GAPDIGIT, ONE, ORTH, TEN, ZERO
|
|
PARAMETER ( GAPDIGIT = 18.0D0, ONE = 1.0D0,
|
|
$ ORTH = 1.0D-12,
|
|
$ TEN = 10.0D0, ZERO = 0.0D0 )
|
|
DOUBLE PRECISION PIOVER2
|
|
PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL FIRSTT
|
|
CHARACTER*3 PATH
|
|
INTEGER I, IINFO, IM, IMAT, J, LDU1, LDU2, LDV1T,
|
|
$ LDV2T, LDX, LWORK, M, NFAIL, NRUN, NT, P, Q, R
|
|
* ..
|
|
* .. Local Arrays ..
|
|
LOGICAL DOTYPE( NTYPES )
|
|
DOUBLE PRECISION RESULT( NTESTS )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALAHDG, ALAREQ, ALASUM, DCSDTS, DLACSG, DLAROR,
|
|
$ DLASET, DROT
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MIN
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLARAN, DLARND
|
|
EXTERNAL DLARAN, DLARND
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Initialize constants and the random number seed.
|
|
*
|
|
PATH( 1: 3 ) = 'CSD'
|
|
INFO = 0
|
|
NRUN = 0
|
|
NFAIL = 0
|
|
FIRSTT = .TRUE.
|
|
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
|
|
LDX = MMAX
|
|
LDU1 = MMAX
|
|
LDU2 = MMAX
|
|
LDV1T = MMAX
|
|
LDV2T = MMAX
|
|
LWORK = MMAX*MMAX
|
|
*
|
|
* Do for each value of M in MVAL.
|
|
*
|
|
DO 30 IM = 1, NM
|
|
M = MVAL( IM )
|
|
P = PVAL( IM )
|
|
Q = QVAL( IM )
|
|
*
|
|
DO 20 IMAT = 1, NTYPES
|
|
*
|
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
|
*
|
|
IF( .NOT.DOTYPE( IMAT ) )
|
|
$ GO TO 20
|
|
*
|
|
* Generate X
|
|
*
|
|
IF( IMAT.EQ.1 ) THEN
|
|
CALL DLAROR( 'L', 'I', M, M, X, LDX, ISEED, WORK, IINFO )
|
|
IF( M .NE. 0 .AND. IINFO .NE. 0 ) THEN
|
|
WRITE( NOUT, FMT = 9999 ) M, IINFO
|
|
INFO = ABS( IINFO )
|
|
GO TO 20
|
|
END IF
|
|
ELSE IF( IMAT.EQ.2 ) THEN
|
|
R = MIN( P, M-P, Q, M-Q )
|
|
DO I = 1, R
|
|
THETA(I) = PIOVER2 * DLARND( 1, ISEED )
|
|
END DO
|
|
CALL DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK )
|
|
DO I = 1, M
|
|
DO J = 1, M
|
|
X(I+(J-1)*LDX) = X(I+(J-1)*LDX) +
|
|
$ ORTH*DLARND(2,ISEED)
|
|
END DO
|
|
END DO
|
|
ELSE IF( IMAT.EQ.3 ) THEN
|
|
R = MIN( P, M-P, Q, M-Q )
|
|
DO I = 1, R+1
|
|
THETA(I) = TEN**(-DLARND(1,ISEED)*GAPDIGIT)
|
|
END DO
|
|
DO I = 2, R+1
|
|
THETA(I) = THETA(I-1) + THETA(I)
|
|
END DO
|
|
DO I = 1, R
|
|
THETA(I) = PIOVER2 * THETA(I) / THETA(R+1)
|
|
END DO
|
|
CALL DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK )
|
|
ELSE
|
|
CALL DLASET( 'F', M, M, ZERO, ONE, X, LDX )
|
|
DO I = 1, M
|
|
J = INT( DLARAN( ISEED ) * M ) + 1
|
|
IF( J .NE. I ) THEN
|
|
CALL DROT( M, X(1+(I-1)*LDX), 1, X(1+(J-1)*LDX), 1,
|
|
$ ZERO, ONE )
|
|
END IF
|
|
END DO
|
|
END IF
|
|
*
|
|
NT = 15
|
|
*
|
|
CALL DCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
|
|
$ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
|
|
$ RWORK, RESULT )
|
|
*
|
|
* Print information about the tests that did not
|
|
* pass the threshold.
|
|
*
|
|
DO 10 I = 1, NT
|
|
IF( RESULT( I ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. FIRSTT ) THEN
|
|
FIRSTT = .FALSE.
|
|
CALL ALAHDG( NOUT, PATH )
|
|
END IF
|
|
WRITE( NOUT, FMT = 9998 )M, P, Q, IMAT, I,
|
|
$ RESULT( I )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
10 CONTINUE
|
|
NRUN = NRUN + NT
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
*
|
|
* Print a summary of the results.
|
|
*
|
|
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, 0 )
|
|
*
|
|
9999 FORMAT( ' DLAROR in DCKCSD: M = ', I5, ', INFO = ', I15 )
|
|
9998 FORMAT( ' M=', I4, ' P=', I4, ', Q=', I4, ', type ', I2,
|
|
$ ', test ', I2, ', ratio=', G13.6 )
|
|
RETURN
|
|
*
|
|
* End of DCKCSD
|
|
*
|
|
END
|
|
*
|
|
*
|
|
*
|
|
SUBROUTINE DLACSG( M, P, Q, THETA, ISEED, X, LDX, WORK )
|
|
IMPLICIT NONE
|
|
*
|
|
INTEGER LDX, M, P, Q
|
|
INTEGER ISEED( 4 )
|
|
DOUBLE PRECISION THETA( * )
|
|
DOUBLE PRECISION WORK( * ), X( LDX, * )
|
|
*
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
|
|
*
|
|
INTEGER I, INFO, R
|
|
*
|
|
R = MIN( P, M-P, Q, M-Q )
|
|
*
|
|
CALL DLASET( 'Full', M, M, ZERO, ZERO, X, LDX )
|
|
*
|
|
DO I = 1, MIN(P,Q)-R
|
|
X(I,I) = ONE
|
|
END DO
|
|
DO I = 1, R
|
|
X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) = COS(THETA(I))
|
|
END DO
|
|
DO I = 1, MIN(P,M-Q)-R
|
|
X(P-I+1,M-I+1) = -ONE
|
|
END DO
|
|
DO I = 1, R
|
|
X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
|
|
$ -SIN(THETA(R-I+1))
|
|
END DO
|
|
DO I = 1, MIN(M-P,Q)-R
|
|
X(M-I+1,Q-I+1) = ONE
|
|
END DO
|
|
DO I = 1, R
|
|
X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
|
|
$ SIN(THETA(R-I+1))
|
|
END DO
|
|
DO I = 1, MIN(M-P,M-Q)-R
|
|
X(P+I,Q+I) = ONE
|
|
END DO
|
|
DO I = 1, R
|
|
X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
|
|
$ COS(THETA(I))
|
|
END DO
|
|
CALL DLAROR( 'Left', 'No init', P, M, X, LDX, ISEED, WORK, INFO )
|
|
CALL DLAROR( 'Left', 'No init', M-P, M, X(P+1,1), LDX,
|
|
$ ISEED, WORK, INFO )
|
|
CALL DLAROR( 'Right', 'No init', M, Q, X, LDX, ISEED,
|
|
$ WORK, INFO )
|
|
CALL DLAROR( 'Right', 'No init', M, M-Q,
|
|
$ X(1,Q+1), LDX, ISEED, WORK, INFO )
|
|
*
|
|
END
|
|
|
|
|