You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
556 lines
18 KiB
556 lines
18 KiB
*> \brief \b DCSDTS
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
|
|
* LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
|
|
* RWORK, RESULT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION RESULT( 15 ), RWORK( * ), THETA( * )
|
|
* DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
|
|
* $ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
|
|
* $ XF( LDX, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DCSDTS tests DORCSD, which, given an M-by-M partitioned orthogonal
|
|
*> matrix X,
|
|
*> Q M-Q
|
|
*> X = [ X11 X12 ] P ,
|
|
*> [ X21 X22 ] M-P
|
|
*>
|
|
*> computes the CSD
|
|
*>
|
|
*> [ U1 ]**T * [ X11 X12 ] * [ V1 ]
|
|
*> [ U2 ] [ X21 X22 ] [ V2 ]
|
|
*>
|
|
*> [ I 0 0 | 0 0 0 ]
|
|
*> [ 0 C 0 | 0 -S 0 ]
|
|
*> [ 0 0 0 | 0 0 -I ]
|
|
*> = [---------------------] = [ D11 D12 ] ,
|
|
*> [ 0 0 0 | I 0 0 ] [ D21 D22 ]
|
|
*> [ 0 S 0 | 0 C 0 ]
|
|
*> [ 0 0 I | 0 0 0 ]
|
|
*>
|
|
*> and also DORCSD2BY1, which, given
|
|
*> Q
|
|
*> [ X11 ] P ,
|
|
*> [ X21 ] M-P
|
|
*>
|
|
*> computes the 2-by-1 CSD
|
|
*>
|
|
*> [ I 0 0 ]
|
|
*> [ 0 C 0 ]
|
|
*> [ 0 0 0 ]
|
|
*> [ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] ,
|
|
*> [ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ]
|
|
*> [ 0 S 0 ]
|
|
*> [ 0 0 I ]
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix X. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] P
|
|
*> \verbatim
|
|
*> P is INTEGER
|
|
*> The number of rows of the matrix X11. P >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Q
|
|
*> \verbatim
|
|
*> Q is INTEGER
|
|
*> The number of columns of the matrix X11. Q >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] X
|
|
*> \verbatim
|
|
*> X is DOUBLE PRECISION array, dimension (LDX,M)
|
|
*> The M-by-M matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XF
|
|
*> \verbatim
|
|
*> XF is DOUBLE PRECISION array, dimension (LDX,M)
|
|
*> Details of the CSD of X, as returned by DORCSD;
|
|
*> see DORCSD for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX
|
|
*> \verbatim
|
|
*> LDX is INTEGER
|
|
*> The leading dimension of the arrays X and XF.
|
|
*> LDX >= max( 1,M ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U1
|
|
*> \verbatim
|
|
*> U1 is DOUBLE PRECISION array, dimension(LDU1,P)
|
|
*> The P-by-P orthogonal matrix U1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU1
|
|
*> \verbatim
|
|
*> LDU1 is INTEGER
|
|
*> The leading dimension of the array U1. LDU >= max(1,P).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U2
|
|
*> \verbatim
|
|
*> U2 is DOUBLE PRECISION array, dimension(LDU2,M-P)
|
|
*> The (M-P)-by-(M-P) orthogonal matrix U2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU2
|
|
*> \verbatim
|
|
*> LDU2 is INTEGER
|
|
*> The leading dimension of the array U2. LDU >= max(1,M-P).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V1T
|
|
*> \verbatim
|
|
*> V1T is DOUBLE PRECISION array, dimension(LDV1T,Q)
|
|
*> The Q-by-Q orthogonal matrix V1T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV1T
|
|
*> \verbatim
|
|
*> LDV1T is INTEGER
|
|
*> The leading dimension of the array V1T. LDV1T >=
|
|
*> max(1,Q).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V2T
|
|
*> \verbatim
|
|
*> V2T is DOUBLE PRECISION array, dimension(LDV2T,M-Q)
|
|
*> The (M-Q)-by-(M-Q) orthogonal matrix V2T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV2T
|
|
*> \verbatim
|
|
*> LDV2T is INTEGER
|
|
*> The leading dimension of the array V2T. LDV2T >=
|
|
*> max(1,M-Q).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] THETA
|
|
*> \verbatim
|
|
*> THETA is DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q)
|
|
*> The CS values of X; the essentially diagonal matrices C and
|
|
*> S are constructed from THETA; see subroutine DORCSD for
|
|
*> details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is DOUBLE PRECISION array, dimension (15)
|
|
*> The test ratios:
|
|
*> First, the 2-by-2 CSD:
|
|
*> RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
|
|
*> RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 )
|
|
*> RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
|
|
*> RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 )
|
|
*> RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
|
|
*> RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
|
|
*> RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
|
|
*> RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP )
|
|
*> RESULT(9) = 0 if THETA is in increasing order and
|
|
*> all angles are in [0,pi/2];
|
|
*> = ULPINV otherwise.
|
|
*> Then, the 2-by-1 CSD:
|
|
*> RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
|
|
*> RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
|
|
*> RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
|
|
*> RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
|
|
*> RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
|
|
*> RESULT(15) = 0 if THETA is in increasing order and
|
|
*> all angles are in [0,pi/2];
|
|
*> = ULPINV otherwise.
|
|
*> ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
|
|
$ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
|
|
$ RWORK, RESULT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION RESULT( 15 ), RWORK( * ), THETA( * )
|
|
DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
|
|
$ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
|
|
$ XF( LDX, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION REALONE, REALZERO
|
|
PARAMETER ( REALONE = 1.0D0, REALZERO = 0.0D0 )
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
DOUBLE PRECISION PIOVER2
|
|
PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, INFO, R
|
|
DOUBLE PRECISION EPS2, RESID, ULP, ULPINV
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
|
|
EXTERNAL DLAMCH, DLANGE, DLANSY
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMM, DLACPY, DLASET, DORCSD, DORCSD2BY1,
|
|
$ DSYRK
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC COS, DBLE, MAX, MIN, SIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
ULP = DLAMCH( 'Precision' )
|
|
ULPINV = REALONE / ULP
|
|
*
|
|
* The first half of the routine checks the 2-by-2 CSD
|
|
*
|
|
CALL DLASET( 'Full', M, M, ZERO, ONE, WORK, LDX )
|
|
CALL DSYRK( 'Upper', 'Conjugate transpose', M, M, -ONE, X, LDX,
|
|
$ ONE, WORK, LDX )
|
|
IF (M.GT.0) THEN
|
|
EPS2 = MAX( ULP,
|
|
$ DLANGE( '1', M, M, WORK, LDX, RWORK ) / DBLE( M ) )
|
|
ELSE
|
|
EPS2 = ULP
|
|
END IF
|
|
R = MIN( P, M-P, Q, M-Q )
|
|
*
|
|
* Copy the matrix X to the array XF.
|
|
*
|
|
CALL DLACPY( 'Full', M, M, X, LDX, XF, LDX )
|
|
*
|
|
* Compute the CSD
|
|
*
|
|
CALL DORCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX,
|
|
$ XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX,
|
|
$ THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
|
|
$ WORK, LWORK, IWORK, INFO )
|
|
*
|
|
* Compute XF := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22]
|
|
*
|
|
CALL DLACPY( 'Full', M, M, X, LDX, XF, LDX )
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
|
|
$ XF, LDX, V1T, LDV1T, ZERO, WORK, LDX )
|
|
*
|
|
CALL DGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
|
|
$ U1, LDU1, WORK, LDX, ZERO, XF, LDX )
|
|
*
|
|
DO I = 1, MIN(P,Q)-R
|
|
XF(I,I) = XF(I,I) - ONE
|
|
END DO
|
|
DO I = 1, R
|
|
XF(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
|
|
$ XF(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - COS(THETA(I))
|
|
END DO
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q,
|
|
$ ONE, XF(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
|
|
*
|
|
CALL DGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P,
|
|
$ ONE, U1, LDU1, WORK, LDX, ZERO, XF(1,Q+1), LDX )
|
|
*
|
|
DO I = 1, MIN(P,M-Q)-R
|
|
XF(P-I+1,M-I+1) = XF(P-I+1,M-I+1) + ONE
|
|
END DO
|
|
DO I = 1, R
|
|
XF(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
|
|
$ XF(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) +
|
|
$ SIN(THETA(R-I+1))
|
|
END DO
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
|
|
$ XF(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
|
|
*
|
|
CALL DGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
|
|
$ ONE, U2, LDU2, WORK, LDX, ZERO, XF(P+1,1), LDX )
|
|
*
|
|
DO I = 1, MIN(M-P,Q)-R
|
|
XF(M-I+1,Q-I+1) = XF(M-I+1,Q-I+1) - ONE
|
|
END DO
|
|
DO I = 1, R
|
|
XF(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
|
|
$ XF(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
|
|
$ SIN(THETA(R-I+1))
|
|
END DO
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q,
|
|
$ ONE, XF(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
|
|
*
|
|
CALL DGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P,
|
|
$ ONE, U2, LDU2, WORK, LDX, ZERO, XF(P+1,Q+1), LDX )
|
|
*
|
|
DO I = 1, MIN(M-P,M-Q)-R
|
|
XF(P+I,Q+I) = XF(P+I,Q+I) - ONE
|
|
END DO
|
|
DO I = 1, R
|
|
XF(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
|
|
$ XF(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) -
|
|
$ COS(THETA(I))
|
|
END DO
|
|
*
|
|
* Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
|
|
*
|
|
RESID = DLANGE( '1', P, Q, XF, LDX, RWORK )
|
|
RESULT( 1 ) = ( RESID / DBLE(MAX(1,P,Q)) ) / EPS2
|
|
*
|
|
* Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) .
|
|
*
|
|
RESID = DLANGE( '1', P, M-Q, XF(1,Q+1), LDX, RWORK )
|
|
RESULT( 2 ) = ( RESID / DBLE(MAX(1,P,M-Q)) ) / EPS2
|
|
*
|
|
* Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
|
|
*
|
|
RESID = DLANGE( '1', M-P, Q, XF(P+1,1), LDX, RWORK )
|
|
RESULT( 3 ) = ( RESID / DBLE(MAX(1,M-P,Q)) ) / EPS2
|
|
*
|
|
* Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) .
|
|
*
|
|
RESID = DLANGE( '1', M-P, M-Q, XF(P+1,Q+1), LDX, RWORK )
|
|
RESULT( 4 ) = ( RESID / DBLE(MAX(1,M-P,M-Q)) ) / EPS2
|
|
*
|
|
* Compute I - U1'*U1
|
|
*
|
|
CALL DLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
|
|
CALL DSYRK( 'Upper', 'Conjugate transpose', P, P, -ONE, U1, LDU1,
|
|
$ ONE, WORK, LDU1 )
|
|
*
|
|
* Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) .
|
|
*
|
|
RESID = DLANSY( '1', 'Upper', P, WORK, LDU1, RWORK )
|
|
RESULT( 5 ) = ( RESID / DBLE(MAX(1,P)) ) / ULP
|
|
*
|
|
* Compute I - U2'*U2
|
|
*
|
|
CALL DLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
|
|
CALL DSYRK( 'Upper', 'Conjugate transpose', M-P, M-P, -ONE, U2,
|
|
$ LDU2, ONE, WORK, LDU2 )
|
|
*
|
|
* Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
|
|
*
|
|
RESID = DLANSY( '1', 'Upper', M-P, WORK, LDU2, RWORK )
|
|
RESULT( 6 ) = ( RESID / DBLE(MAX(1,M-P)) ) / ULP
|
|
*
|
|
* Compute I - V1T*V1T'
|
|
*
|
|
CALL DLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
|
|
CALL DSYRK( 'Upper', 'No transpose', Q, Q, -ONE, V1T, LDV1T, ONE,
|
|
$ WORK, LDV1T )
|
|
*
|
|
* Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
|
|
*
|
|
RESID = DLANSY( '1', 'Upper', Q, WORK, LDV1T, RWORK )
|
|
RESULT( 7 ) = ( RESID / DBLE(MAX(1,Q)) ) / ULP
|
|
*
|
|
* Compute I - V2T*V2T'
|
|
*
|
|
CALL DLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T )
|
|
CALL DSYRK( 'Upper', 'No transpose', M-Q, M-Q, -ONE, V2T, LDV2T,
|
|
$ ONE, WORK, LDV2T )
|
|
*
|
|
* Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) .
|
|
*
|
|
RESID = DLANSY( '1', 'Upper', M-Q, WORK, LDV2T, RWORK )
|
|
RESULT( 8 ) = ( RESID / DBLE(MAX(1,M-Q)) ) / ULP
|
|
*
|
|
* Check sorting
|
|
*
|
|
RESULT( 9 ) = REALZERO
|
|
DO I = 1, R
|
|
IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
|
|
RESULT( 9 ) = ULPINV
|
|
END IF
|
|
IF( I.GT.1 ) THEN
|
|
IF ( THETA(I).LT.THETA(I-1) ) THEN
|
|
RESULT( 9 ) = ULPINV
|
|
END IF
|
|
END IF
|
|
END DO
|
|
*
|
|
* The second half of the routine checks the 2-by-1 CSD
|
|
*
|
|
CALL DLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDX )
|
|
CALL DSYRK( 'Upper', 'Conjugate transpose', Q, M, -ONE, X, LDX,
|
|
$ ONE, WORK, LDX )
|
|
IF( M.GT.0 ) THEN
|
|
EPS2 = MAX( ULP,
|
|
$ DLANGE( '1', Q, Q, WORK, LDX, RWORK ) / DBLE( M ) )
|
|
ELSE
|
|
EPS2 = ULP
|
|
END IF
|
|
R = MIN( P, M-P, Q, M-Q )
|
|
*
|
|
* Copy the matrix [ X11; X21 ] to the array XF.
|
|
*
|
|
CALL DLACPY( 'Full', M, Q, X, LDX, XF, LDX )
|
|
*
|
|
* Compute the CSD
|
|
*
|
|
CALL DORCSD2BY1( 'Y', 'Y', 'Y', M, P, Q, XF(1,1), LDX, XF(P+1,1),
|
|
$ LDX, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, WORK,
|
|
$ LWORK, IWORK, INFO )
|
|
*
|
|
* Compute [X11;X21] := diag(U1,U2)'*[X11;X21]*V1 - [D11;D21]
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
|
|
$ X, LDX, V1T, LDV1T, ZERO, WORK, LDX )
|
|
*
|
|
CALL DGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
|
|
$ U1, LDU1, WORK, LDX, ZERO, X, LDX )
|
|
*
|
|
DO I = 1, MIN(P,Q)-R
|
|
X(I,I) = X(I,I) - ONE
|
|
END DO
|
|
DO I = 1, R
|
|
X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
|
|
$ X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - COS(THETA(I))
|
|
END DO
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
|
|
$ X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
|
|
*
|
|
CALL DGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
|
|
$ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX )
|
|
*
|
|
DO I = 1, MIN(M-P,Q)-R
|
|
X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE
|
|
END DO
|
|
DO I = 1, R
|
|
X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
|
|
$ X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
|
|
$ SIN(THETA(R-I+1))
|
|
END DO
|
|
*
|
|
* Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
|
|
*
|
|
RESID = DLANGE( '1', P, Q, X, LDX, RWORK )
|
|
RESULT( 10 ) = ( RESID / DBLE(MAX(1,P,Q)) ) / EPS2
|
|
*
|
|
* Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
|
|
*
|
|
RESID = DLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK )
|
|
RESULT( 11 ) = ( RESID / DBLE(MAX(1,M-P,Q)) ) / EPS2
|
|
*
|
|
* Compute I - U1'*U1
|
|
*
|
|
CALL DLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
|
|
CALL DSYRK( 'Upper', 'Conjugate transpose', P, P, -ONE, U1, LDU1,
|
|
$ ONE, WORK, LDU1 )
|
|
*
|
|
* Compute norm( I - U1'*U1 ) / ( MAX(1,P) * ULP ) .
|
|
*
|
|
RESID = DLANSY( '1', 'Upper', P, WORK, LDU1, RWORK )
|
|
RESULT( 12 ) = ( RESID / DBLE(MAX(1,P)) ) / ULP
|
|
*
|
|
* Compute I - U2'*U2
|
|
*
|
|
CALL DLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
|
|
CALL DSYRK( 'Upper', 'Conjugate transpose', M-P, M-P, -ONE, U2,
|
|
$ LDU2, ONE, WORK, LDU2 )
|
|
*
|
|
* Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
|
|
*
|
|
RESID = DLANSY( '1', 'Upper', M-P, WORK, LDU2, RWORK )
|
|
RESULT( 13 ) = ( RESID / DBLE(MAX(1,M-P)) ) / ULP
|
|
*
|
|
* Compute I - V1T*V1T'
|
|
*
|
|
CALL DLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
|
|
CALL DSYRK( 'Upper', 'No transpose', Q, Q, -ONE, V1T, LDV1T, ONE,
|
|
$ WORK, LDV1T )
|
|
*
|
|
* Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
|
|
*
|
|
RESID = DLANSY( '1', 'Upper', Q, WORK, LDV1T, RWORK )
|
|
RESULT( 14 ) = ( RESID / DBLE(MAX(1,Q)) ) / ULP
|
|
*
|
|
* Check sorting
|
|
*
|
|
RESULT( 15 ) = REALZERO
|
|
DO I = 1, R
|
|
IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
|
|
RESULT( 15 ) = ULPINV
|
|
END IF
|
|
IF( I.GT.1 ) THEN
|
|
IF ( THETA(I).LT.THETA(I-1) ) THEN
|
|
RESULT( 15 ) = ULPINV
|
|
END IF
|
|
END IF
|
|
END DO
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DCSDTS
|
|
*
|
|
END
|
|
|
|
|