Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

2846 lines
102 KiB

*> \brief \b SDRVST
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
* NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1,
* WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK,
* IWORK, LIWORK, RESULT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
* $ NTYPES
* REAL THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER ISEED( 4 ), IWORK( * ), NN( * )
* REAL A( LDA, * ), D1( * ), D2( * ), D3( * ),
* $ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ),
* $ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ),
* $ WA3( * ), WORK( * ), Z( LDU, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SDRVST checks the symmetric eigenvalue problem drivers.
*>
*> SSTEV computes all eigenvalues and, optionally,
*> eigenvectors of a real symmetric tridiagonal matrix.
*>
*> SSTEVX computes selected eigenvalues and, optionally,
*> eigenvectors of a real symmetric tridiagonal matrix.
*>
*> SSTEVR computes selected eigenvalues and, optionally,
*> eigenvectors of a real symmetric tridiagonal matrix
*> using the Relatively Robust Representation where it can.
*>
*> SSYEV computes all eigenvalues and, optionally,
*> eigenvectors of a real symmetric matrix.
*>
*> SSYEVX computes selected eigenvalues and, optionally,
*> eigenvectors of a real symmetric matrix.
*>
*> SSYEVR computes selected eigenvalues and, optionally,
*> eigenvectors of a real symmetric matrix
*> using the Relatively Robust Representation where it can.
*>
*> SSPEV computes all eigenvalues and, optionally,
*> eigenvectors of a real symmetric matrix in packed
*> storage.
*>
*> SSPEVX computes selected eigenvalues and, optionally,
*> eigenvectors of a real symmetric matrix in packed
*> storage.
*>
*> SSBEV computes all eigenvalues and, optionally,
*> eigenvectors of a real symmetric band matrix.
*>
*> SSBEVX computes selected eigenvalues and, optionally,
*> eigenvectors of a real symmetric band matrix.
*>
*> SSYEVD computes all eigenvalues and, optionally,
*> eigenvectors of a real symmetric matrix using
*> a divide and conquer algorithm.
*>
*> SSPEVD computes all eigenvalues and, optionally,
*> eigenvectors of a real symmetric matrix in packed
*> storage, using a divide and conquer algorithm.
*>
*> SSBEVD computes all eigenvalues and, optionally,
*> eigenvectors of a real symmetric band matrix,
*> using a divide and conquer algorithm.
*>
*> When SDRVST is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified. For each size ("n")
*> and each type of matrix, one matrix will be generated and used
*> to test the appropriate drivers. For each matrix and each
*> driver routine called, the following tests will be performed:
*>
*> (1) | A - Z D Z' | / ( |A| n ulp )
*>
*> (2) | I - Z Z' | / ( n ulp )
*>
*> (3) | D1 - D2 | / ( |D1| ulp )
*>
*> where Z is the matrix of eigenvectors returned when the
*> eigenvector option is given and D1 and D2 are the eigenvalues
*> returned with and without the eigenvector option.
*>
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
*> each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1) The zero matrix.
*> (2) The identity matrix.
*>
*> (3) A diagonal matrix with evenly spaced eigenvalues
*> 1, ..., ULP and random signs.
*> (ULP = (first number larger than 1) - 1 )
*> (4) A diagonal matrix with geometrically spaced eigenvalues
*> 1, ..., ULP and random signs.
*> (5) A diagonal matrix with "clustered" eigenvalues
*> 1, ULP, ..., ULP and random signs.
*>
*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
*>
*> (8) A matrix of the form U' D U, where U is orthogonal and
*> D has evenly spaced entries 1, ..., ULP with random signs
*> on the diagonal.
*>
*> (9) A matrix of the form U' D U, where U is orthogonal and
*> D has geometrically spaced entries 1, ..., ULP with random
*> signs on the diagonal.
*>
*> (10) A matrix of the form U' D U, where U is orthogonal and
*> D has "clustered" entries 1, ULP,..., ULP with random
*> signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Symmetric matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*> (16) A band matrix with half bandwidth randomly chosen between
*> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
*> with random signs.
*> (17) Same as (16), but multiplied by SQRT( overflow threshold )
*> (18) Same as (16), but multiplied by SQRT( underflow threshold )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> NSIZES INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> SDRVST does nothing. It must be at least zero.
*> Not modified.
*>
*> NN INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. The values must be at least
*> zero.
*> Not modified.
*>
*> NTYPES INTEGER
*> The number of elements in DOTYPE. If it is zero, SDRVST
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A. This
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> Not modified.
*>
*> DOTYPE LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> Not modified.
*>
*> ISEED INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to SDRVST to continue the same random number
*> sequence.
*> Modified.
*>
*> THRESH REAL
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. It must be at least zero.
*> Not modified.
*>
*> NOUNIT INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> Not modified.
*>
*> A REAL array, dimension (LDA , max(NN))
*> Used to hold the matrix whose eigenvalues are to be
*> computed. On exit, A contains the last matrix actually
*> used.
*> Modified.
*>
*> LDA INTEGER
*> The leading dimension of A. It must be at
*> least 1 and at least max( NN ).
*> Not modified.
*>
*> D1 REAL array, dimension (max(NN))
*> The eigenvalues of A, as computed by SSTEQR simultaneously
*> with Z. On exit, the eigenvalues in D1 correspond with the
*> matrix in A.
*> Modified.
*>
*> D2 REAL array, dimension (max(NN))
*> The eigenvalues of A, as computed by SSTEQR if Z is not
*> computed. On exit, the eigenvalues in D2 correspond with
*> the matrix in A.
*> Modified.
*>
*> D3 REAL array, dimension (max(NN))
*> The eigenvalues of A, as computed by SSTERF. On exit, the
*> eigenvalues in D3 correspond with the matrix in A.
*> Modified.
*>
*> D4 REAL array, dimension
*>
*> EVEIGS REAL array, dimension (max(NN))
*> The eigenvalues as computed by SSTEV('N', ... )
*> (I reserve the right to change this to the output of
*> whichever algorithm computes the most accurate eigenvalues).
*>
*> WA1 REAL array, dimension
*>
*> WA2 REAL array, dimension
*>
*> WA3 REAL array, dimension
*>
*> U REAL array, dimension (LDU, max(NN))
*> The orthogonal matrix computed by SSYTRD + SORGTR.
*> Modified.
*>
*> LDU INTEGER
*> The leading dimension of U, Z, and V. It must be at
*> least 1 and at least max( NN ).
*> Not modified.
*>
*> V REAL array, dimension (LDU, max(NN))
*> The Housholder vectors computed by SSYTRD in reducing A to
*> tridiagonal form.
*> Modified.
*>
*> TAU REAL array, dimension (max(NN))
*> The Householder factors computed by SSYTRD in reducing A
*> to tridiagonal form.
*> Modified.
*>
*> Z REAL array, dimension (LDU, max(NN))
*> The orthogonal matrix of eigenvectors computed by SSTEQR,
*> SPTEQR, and SSTEIN.
*> Modified.
*>
*> WORK REAL array, dimension (LWORK)
*> Workspace.
*> Modified.
*>
*> LWORK INTEGER
*> The number of entries in WORK. This must be at least
*> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2
*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
*> Not modified.
*>
*> IWORK INTEGER array,
*> dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax )
*> where Nmax = max( NN(j), 2 ) and lg = log base 2.
*> Workspace.
*> Modified.
*>
*> RESULT REAL array, dimension (105)
*> The values computed by the tests described above.
*> The values are currently limited to 1/ulp, to avoid
*> overflow.
*> Modified.
*>
*> INFO INTEGER
*> If 0, then everything ran OK.
*> -1: NSIZES < 0
*> -2: Some NN(j) < 0
*> -3: NTYPES < 0
*> -5: THRESH < 0
*> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
*> -16: LDU < 1 or LDU < NMAX.
*> -21: LWORK too small.
*> If SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF,
*> or SORMTR returns an error code, the
*> absolute value of it is returned.
*> Modified.
*>
*>-----------------------------------------------------------------------
*>
*> Some Local Variables and Parameters:
*> ---- ----- --------- --- ----------
*> ZERO, ONE Real 0 and 1.
*> MAXTYP The number of types defined.
*> NTEST The number of tests performed, or which can
*> be performed so far, for the current matrix.
*> NTESTT The total number of tests performed so far.
*> NMAX Largest value in NN.
*> NMATS The number of matrices generated so far.
*> NERRS The number of tests which have exceeded THRESH
*> so far (computed by SLAFTS).
*> COND, IMODE Values to be passed to the matrix generators.
*> ANORM Norm of A; passed to matrix generators.
*>
*> OVFL, UNFL Overflow and underflow thresholds.
*> ULP, ULPINV Finest relative precision and its inverse.
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
*> The following four arrays decode JTYPE:
*> KTYPE(j) The general type (1-10) for type "j".
*> KMODE(j) The MODE value to be passed to the matrix
*> generator for type "j".
*> KMAGN(j) The order of magnitude ( O(1),
*> O(overflow^(1/2) ), O(underflow^(1/2) )
*>
*> The tests performed are: Routine tested
*> 1= | A - U S U' | / ( |A| n ulp ) SSTEV('V', ... )
*> 2= | I - U U' | / ( n ulp ) SSTEV('V', ... )
*> 3= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEV('N', ... )
*> 4= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','A', ... )
*> 5= | I - U U' | / ( n ulp ) SSTEVX('V','A', ... )
*> 6= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVX('N','A', ... )
*> 7= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','A', ... )
*> 8= | I - U U' | / ( n ulp ) SSTEVR('V','A', ... )
*> 9= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVR('N','A', ... )
*> 10= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','I', ... )
*> 11= | I - U U' | / ( n ulp ) SSTEVX('V','I', ... )
*> 12= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','I', ... )
*> 13= | A - U S U' | / ( |A| n ulp ) SSTEVX('V','V', ... )
*> 14= | I - U U' | / ( n ulp ) SSTEVX('V','V', ... )
*> 15= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVX('N','V', ... )
*> 16= | A - U S U' | / ( |A| n ulp ) SSTEVD('V', ... )
*> 17= | I - U U' | / ( n ulp ) SSTEVD('V', ... )
*> 18= |D(with Z) - EVEIGS| / (|D| ulp) SSTEVD('N', ... )
*> 19= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','I', ... )
*> 20= | I - U U' | / ( n ulp ) SSTEVR('V','I', ... )
*> 21= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','I', ... )
*> 22= | A - U S U' | / ( |A| n ulp ) SSTEVR('V','V', ... )
*> 23= | I - U U' | / ( n ulp ) SSTEVR('V','V', ... )
*> 24= |D(with Z) - D(w/o Z)| / (|D| ulp) SSTEVR('N','V', ... )
*>
*> 25= | A - U S U' | / ( |A| n ulp ) SSYEV('L','V', ... )
*> 26= | I - U U' | / ( n ulp ) SSYEV('L','V', ... )
*> 27= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEV('L','N', ... )
*> 28= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','A', ... )
*> 29= | I - U U' | / ( n ulp ) SSYEVX('L','V','A', ... )
*> 30= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX('L','N','A', ... )
*> 31= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','I', ... )
*> 32= | I - U U' | / ( n ulp ) SSYEVX('L','V','I', ... )
*> 33= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX('L','N','I', ... )
*> 34= | A - U S U' | / ( |A| n ulp ) SSYEVX('L','V','V', ... )
*> 35= | I - U U' | / ( n ulp ) SSYEVX('L','V','V', ... )
*> 36= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVX('L','N','V', ... )
*> 37= | A - U S U' | / ( |A| n ulp ) SSPEV('L','V', ... )
*> 38= | I - U U' | / ( n ulp ) SSPEV('L','V', ... )
*> 39= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEV('L','N', ... )
*> 40= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','A', ... )
*> 41= | I - U U' | / ( n ulp ) SSPEVX('L','V','A', ... )
*> 42= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','A', ... )
*> 43= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','I', ... )
*> 44= | I - U U' | / ( n ulp ) SSPEVX('L','V','I', ... )
*> 45= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','I', ... )
*> 46= | A - U S U' | / ( |A| n ulp ) SSPEVX('L','V','V', ... )
*> 47= | I - U U' | / ( n ulp ) SSPEVX('L','V','V', ... )
*> 48= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVX('L','N','V', ... )
*> 49= | A - U S U' | / ( |A| n ulp ) SSBEV('L','V', ... )
*> 50= | I - U U' | / ( n ulp ) SSBEV('L','V', ... )
*> 51= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEV('L','N', ... )
*> 52= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','A', ... )
*> 53= | I - U U' | / ( n ulp ) SSBEVX('L','V','A', ... )
*> 54= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX('L','N','A', ... )
*> 55= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','I', ... )
*> 56= | I - U U' | / ( n ulp ) SSBEVX('L','V','I', ... )
*> 57= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX('L','N','I', ... )
*> 58= | A - U S U' | / ( |A| n ulp ) SSBEVX('L','V','V', ... )
*> 59= | I - U U' | / ( n ulp ) SSBEVX('L','V','V', ... )
*> 60= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVX('L','N','V', ... )
*> 61= | A - U S U' | / ( |A| n ulp ) SSYEVD('L','V', ... )
*> 62= | I - U U' | / ( n ulp ) SSYEVD('L','V', ... )
*> 63= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVD('L','N', ... )
*> 64= | A - U S U' | / ( |A| n ulp ) SSPEVD('L','V', ... )
*> 65= | I - U U' | / ( n ulp ) SSPEVD('L','V', ... )
*> 66= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVD('L','N', ... )
*> 67= | A - U S U' | / ( |A| n ulp ) SSBEVD('L','V', ... )
*> 68= | I - U U' | / ( n ulp ) SSBEVD('L','V', ... )
*> 69= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVD('L','N', ... )
*> 70= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','A', ... )
*> 71= | I - U U' | / ( n ulp ) SSYEVR('L','V','A', ... )
*> 72= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR('L','N','A', ... )
*> 73= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','I', ... )
*> 74= | I - U U' | / ( n ulp ) SSYEVR('L','V','I', ... )
*> 75= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR('L','N','I', ... )
*> 76= | A - U S U' | / ( |A| n ulp ) SSYEVR('L','V','V', ... )
*> 77= | I - U U' | / ( n ulp ) SSYEVR('L','V','V', ... )
*> 78= |D(with Z) - D(w/o Z)| / (|D| ulp) SSYEVR('L','N','V', ... )
*>
*> Tests 25 through 78 are repeated (as tests 79 through 132)
*> with UPLO='U'
*>
*> To be added in 1999
*>
*> 79= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','A', ... )
*> 80= | I - U U' | / ( n ulp ) SSPEVR('L','V','A', ... )
*> 81= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','A', ... )
*> 82= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','I', ... )
*> 83= | I - U U' | / ( n ulp ) SSPEVR('L','V','I', ... )
*> 84= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','I', ... )
*> 85= | A - U S U' | / ( |A| n ulp ) SSPEVR('L','V','V', ... )
*> 86= | I - U U' | / ( n ulp ) SSPEVR('L','V','V', ... )
*> 87= |D(with Z) - D(w/o Z)| / (|D| ulp) SSPEVR('L','N','V', ... )
*> 88= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','A', ... )
*> 89= | I - U U' | / ( n ulp ) SSBEVR('L','V','A', ... )
*> 90= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','A', ... )
*> 91= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','I', ... )
*> 92= | I - U U' | / ( n ulp ) SSBEVR('L','V','I', ... )
*> 93= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','I', ... )
*> 94= | A - U S U' | / ( |A| n ulp ) SSBEVR('L','V','V', ... )
*> 95= | I - U U' | / ( n ulp ) SSBEVR('L','V','V', ... )
*> 96= |D(with Z) - D(w/o Z)| / (|D| ulp) SSBEVR('L','N','V', ... )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, D1, D2, D3, D4, EVEIGS, WA1,
$ WA2, WA3, U, LDU, V, TAU, Z, WORK, LWORK,
$ IWORK, LIWORK, RESULT, INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
$ NTYPES
REAL THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
REAL A( LDA, * ), D1( * ), D2( * ), D3( * ),
$ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ),
$ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ),
$ WA3( * ), WORK( * ), Z( LDU, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO, TEN
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
$ TEN = 10.0E0 )
REAL HALF
PARAMETER ( HALF = 0.5E0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 18 )
* ..
* .. Local Scalars ..
LOGICAL BADNN
CHARACTER UPLO
INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDX, IROW,
$ ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
$ JSIZE, JTYPE, KD, LGN, LIWEDC, LWEDC, M, M2,
$ M3, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
$ NTESTT
REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
$ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
$ VL, VU
* ..
* .. Local Arrays ..
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
$ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
$ KTYPE( MAXTYP )
* ..
* .. External Functions ..
REAL SLAMCH, SLARND, SSXT1
EXTERNAL SLAMCH, SLARND, SSXT1
* ..
* .. External Subroutines ..
EXTERNAL ALASVM, SLACPY, SLAFTS, SLASET, SLATMR, SLATMS,
$ SSBEV, SSBEVD, SSBEVX, SSPEV, SSPEVD, SSPEVX,
$ SSTEV, SSTEVD, SSTEVR, SSTEVX, SSTT21, SSTT22,
$ SSYEV, SSYEVD, SSYEVR, SSYEVX, SSYT21, SSYT22,
$ XERBLA
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, MIN, REAL, SQRT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
$ 2, 3, 1, 2, 3 /
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0, 4, 4, 4 /
* ..
* .. Executable Statements ..
*
* Keep ftrnchek happy
*
VL = ZERO
VU = ZERO
*
* 1) Check for errors
*
NTESTT = 0
INFO = 0
*
BADNN = .FALSE.
NMAX = 1
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.NMAX ) THEN
INFO = -9
ELSE IF( LDU.LT.NMAX ) THEN
INFO = -16
ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
INFO = -21
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SDRVST', -INFO )
RETURN
END IF
*
* Quick return if nothing to do
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
* More Important constants
*
UNFL = SLAMCH( 'Safe minimum' )
OVFL = SLAMCH( 'Overflow' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
ULPINV = ONE / ULP
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
*
* Loop over sizes, types
*
DO 20 I = 1, 4
ISEED2( I ) = ISEED( I )
ISEED3( I ) = ISEED( I )
20 CONTINUE
*
NERRS = 0
NMATS = 0
*
*
DO 1740 JSIZE = 1, NSIZES
N = NN( JSIZE )
IF( N.GT.0 ) THEN
LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
c LIWEDC = 6 + 6*N + 5*N*LGN
LIWEDC = 3 + 5*N
ELSE
LWEDC = 9
c LIWEDC = 12
LIWEDC = 8
END IF
ANINV = ONE / REAL( MAX( 1, N ) )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 1730 JTYPE = 1, MTYPES
*
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 1730
NMATS = NMATS + 1
NTEST = 0
*
DO 30 J = 1, 4
IOLDSD( J ) = ISEED( J )
30 CONTINUE
*
* 2) Compute "A"
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random log symmetric, w/ eigenvalues
* =6 random (none)
* =7 random diagonal
* =8 random symmetric
* =9 band symmetric, w/ eigenvalues
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 110
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*ANINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*N*ULPINV
GO TO 70
*
70 CONTINUE
*
CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
IINFO = 0
COND = ULPINV
*
* Special Matrices -- Identity & Jordan block
*
* Zero
*
IF( ITYPE.EQ.1 ) THEN
IINFO = 0
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
DO 80 JCOL = 1, N
A( JCOL, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
$ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Symmetric, eigenvalues specified
*
CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
$ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random eigenvalues
*
IDUMMA( 1 ) = 1
CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Symmetric, random eigenvalues
*
IDUMMA( 1 ) = 1
CALL SLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Symmetric banded, eigenvalues specified
*
IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) )
CALL SLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
$ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK( N+1 ),
$ IINFO )
*
* Store as dense matrix for most routines.
*
CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
DO 100 IDIAG = -IHBW, IHBW
IROW = IHBW - IDIAG + 1
J1 = MAX( 1, IDIAG+1 )
J2 = MIN( N, N+IDIAG )
DO 90 J = J1, J2
I = J - IDIAG
A( I, J ) = U( IROW, J )
90 CONTINUE
100 CONTINUE
ELSE
IINFO = 1
END IF
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
110 CONTINUE
*
ABSTOL = UNFL + UNFL
IF( N.LE.1 ) THEN
IL = 1
IU = N
ELSE
IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) )
IF( IL.GT.IU ) THEN
ITEMP = IL
IL = IU
IU = ITEMP
END IF
END IF
*
* 3) If matrix is tridiagonal, call SSTEV and SSTEVX.
*
IF( JTYPE.LE.7 ) THEN
NTEST = 1
DO 120 I = 1, N
D1( I ) = REAL( A( I, I ) )
120 CONTINUE
DO 130 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
130 CONTINUE
SRNAMT = 'SSTEV'
CALL SSTEV( 'V', N, D1, D2, Z, LDU, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEV(V)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 1 ) = ULPINV
RESULT( 2 ) = ULPINV
RESULT( 3 ) = ULPINV
GO TO 180
END IF
END IF
*
* Do tests 1 and 2.
*
DO 140 I = 1, N
D3( I ) = REAL( A( I, I ) )
140 CONTINUE
DO 150 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
150 CONTINUE
CALL SSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK,
$ RESULT( 1 ) )
*
NTEST = 3
DO 160 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
160 CONTINUE
SRNAMT = 'SSTEV'
CALL SSTEV( 'N', N, D3, D4, Z, LDU, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEV(N)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 3 ) = ULPINV
GO TO 180
END IF
END IF
*
* Do test 3.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 170 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
170 CONTINUE
RESULT( 3 ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
180 CONTINUE
*
NTEST = 4
DO 190 I = 1, N
EVEIGS( I ) = D3( I )
D1( I ) = REAL( A( I, I ) )
190 CONTINUE
DO 200 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
200 CONTINUE
SRNAMT = 'SSTEVX'
CALL SSTEVX( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL,
$ M, WA1, Z, LDU, WORK, IWORK, IWORK( 5*N+1 ),
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,A)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 4 ) = ULPINV
RESULT( 5 ) = ULPINV
RESULT( 6 ) = ULPINV
GO TO 250
END IF
END IF
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
*
* Do tests 4 and 5.
*
DO 210 I = 1, N
D3( I ) = REAL( A( I, I ) )
210 CONTINUE
DO 220 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
220 CONTINUE
CALL SSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK,
$ RESULT( 4 ) )
*
NTEST = 6
DO 230 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
230 CONTINUE
SRNAMT = 'SSTEVX'
CALL SSTEVX( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL,
$ M2, WA2, Z, LDU, WORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,A)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 6 ) = ULPINV
GO TO 250
END IF
END IF
*
* Do test 6.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 240 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA2( J ) ),
$ ABS( EVEIGS( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) )
240 CONTINUE
RESULT( 6 ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
250 CONTINUE
*
NTEST = 7
DO 260 I = 1, N
D1( I ) = REAL( A( I, I ) )
260 CONTINUE
DO 270 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
270 CONTINUE
SRNAMT = 'SSTEVR'
CALL SSTEVR( 'V', 'A', N, D1, D2, VL, VU, IL, IU, ABSTOL,
$ M, WA1, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,A)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 7 ) = ULPINV
RESULT( 8 ) = ULPINV
GO TO 320
END IF
END IF
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
*
* Do tests 7 and 8.
*
DO 280 I = 1, N
D3( I ) = REAL( A( I, I ) )
280 CONTINUE
DO 290 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
290 CONTINUE
CALL SSTT21( N, 0, D3, D4, WA1, D2, Z, LDU, WORK,
$ RESULT( 7 ) )
*
NTEST = 9
DO 300 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
300 CONTINUE
SRNAMT = 'SSTEVR'
CALL SSTEVR( 'N', 'A', N, D3, D4, VL, VU, IL, IU, ABSTOL,
$ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,A)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 9 ) = ULPINV
GO TO 320
END IF
END IF
*
* Do test 9.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 310 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA2( J ) ),
$ ABS( EVEIGS( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA2( J )-EVEIGS( J ) ) )
310 CONTINUE
RESULT( 9 ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
320 CONTINUE
*
*
NTEST = 10
DO 330 I = 1, N
D1( I ) = REAL( A( I, I ) )
330 CONTINUE
DO 340 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
340 CONTINUE
SRNAMT = 'SSTEVX'
CALL SSTEVX( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL,
$ M2, WA2, Z, LDU, WORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,I)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 10 ) = ULPINV
RESULT( 11 ) = ULPINV
RESULT( 12 ) = ULPINV
GO TO 380
END IF
END IF
*
* Do tests 10 and 11.
*
DO 350 I = 1, N
D3( I ) = REAL( A( I, I ) )
350 CONTINUE
DO 360 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
360 CONTINUE
CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
$ MAX( 1, M2 ), RESULT( 10 ) )
*
*
NTEST = 12
DO 370 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
370 CONTINUE
SRNAMT = 'SSTEVX'
CALL SSTEVX( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL,
$ M3, WA3, Z, LDU, WORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,I)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 12 ) = ULPINV
GO TO 380
END IF
END IF
*
* Do test 12.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
RESULT( 12 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 )
*
380 CONTINUE
*
NTEST = 12
IF( N.GT.0 ) THEN
IF( IL.NE.1 ) THEN
VL = WA1( IL ) - MAX( HALF*
$ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3,
$ TEN*RTUNFL )
ELSE
VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
IF( IU.NE.N ) THEN
VU = WA1( IU ) + MAX( HALF*
$ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3,
$ TEN*RTUNFL )
ELSE
VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
ELSE
VL = ZERO
VU = ONE
END IF
*
DO 390 I = 1, N
D1( I ) = REAL( A( I, I ) )
390 CONTINUE
DO 400 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
400 CONTINUE
SRNAMT = 'SSTEVX'
CALL SSTEVX( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL,
$ M2, WA2, Z, LDU, WORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVX(V,V)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 13 ) = ULPINV
RESULT( 14 ) = ULPINV
RESULT( 15 ) = ULPINV
GO TO 440
END IF
END IF
*
IF( M2.EQ.0 .AND. N.GT.0 ) THEN
RESULT( 13 ) = ULPINV
RESULT( 14 ) = ULPINV
RESULT( 15 ) = ULPINV
GO TO 440
END IF
*
* Do tests 13 and 14.
*
DO 410 I = 1, N
D3( I ) = REAL( A( I, I ) )
410 CONTINUE
DO 420 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
420 CONTINUE
CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
$ MAX( 1, M2 ), RESULT( 13 ) )
*
NTEST = 15
DO 430 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
430 CONTINUE
SRNAMT = 'SSTEVX'
CALL SSTEVX( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL,
$ M3, WA3, Z, LDU, WORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVX(N,V)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 15 ) = ULPINV
GO TO 440
END IF
END IF
*
* Do test 15.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
RESULT( 15 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
*
440 CONTINUE
*
NTEST = 16
DO 450 I = 1, N
D1( I ) = REAL( A( I, I ) )
450 CONTINUE
DO 460 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
460 CONTINUE
SRNAMT = 'SSTEVD'
CALL SSTEVD( 'V', N, D1, D2, Z, LDU, WORK, LWEDC, IWORK,
$ LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVD(V)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 16 ) = ULPINV
RESULT( 17 ) = ULPINV
RESULT( 18 ) = ULPINV
GO TO 510
END IF
END IF
*
* Do tests 16 and 17.
*
DO 470 I = 1, N
D3( I ) = REAL( A( I, I ) )
470 CONTINUE
DO 480 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
480 CONTINUE
CALL SSTT21( N, 0, D3, D4, D1, D2, Z, LDU, WORK,
$ RESULT( 16 ) )
*
NTEST = 18
DO 490 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
490 CONTINUE
SRNAMT = 'SSTEVD'
CALL SSTEVD( 'N', N, D3, D4, Z, LDU, WORK, LWEDC, IWORK,
$ LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVD(N)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 18 ) = ULPINV
GO TO 510
END IF
END IF
*
* Do test 18.
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 500 J = 1, N
TEMP1 = MAX( TEMP1, ABS( EVEIGS( J ) ),
$ ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( EVEIGS( J )-D3( J ) ) )
500 CONTINUE
RESULT( 18 ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
510 CONTINUE
*
NTEST = 19
DO 520 I = 1, N
D1( I ) = REAL( A( I, I ) )
520 CONTINUE
DO 530 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
530 CONTINUE
SRNAMT = 'SSTEVR'
CALL SSTEVR( 'V', 'I', N, D1, D2, VL, VU, IL, IU, ABSTOL,
$ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,I)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 19 ) = ULPINV
RESULT( 20 ) = ULPINV
RESULT( 21 ) = ULPINV
GO TO 570
END IF
END IF
*
* DO tests 19 and 20.
*
DO 540 I = 1, N
D3( I ) = REAL( A( I, I ) )
540 CONTINUE
DO 550 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
550 CONTINUE
CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
$ MAX( 1, M2 ), RESULT( 19 ) )
*
*
NTEST = 21
DO 560 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
560 CONTINUE
SRNAMT = 'SSTEVR'
CALL SSTEVR( 'N', 'I', N, D3, D4, VL, VU, IL, IU, ABSTOL,
$ M3, WA3, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,I)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 21 ) = ULPINV
GO TO 570
END IF
END IF
*
* Do test 21.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
RESULT( 21 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, ULP*TEMP3 )
*
570 CONTINUE
*
NTEST = 21
IF( N.GT.0 ) THEN
IF( IL.NE.1 ) THEN
VL = WA1( IL ) - MAX( HALF*
$ ( WA1( IL )-WA1( IL-1 ) ), TEN*ULP*TEMP3,
$ TEN*RTUNFL )
ELSE
VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
IF( IU.NE.N ) THEN
VU = WA1( IU ) + MAX( HALF*
$ ( WA1( IU+1 )-WA1( IU ) ), TEN*ULP*TEMP3,
$ TEN*RTUNFL )
ELSE
VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
ELSE
VL = ZERO
VU = ONE
END IF
*
DO 580 I = 1, N
D1( I ) = REAL( A( I, I ) )
580 CONTINUE
DO 590 I = 1, N - 1
D2( I ) = REAL( A( I+1, I ) )
590 CONTINUE
SRNAMT = 'SSTEVR'
CALL SSTEVR( 'V', 'V', N, D1, D2, VL, VU, IL, IU, ABSTOL,
$ M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVR(V,V)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 22 ) = ULPINV
RESULT( 23 ) = ULPINV
RESULT( 24 ) = ULPINV
GO TO 630
END IF
END IF
*
IF( M2.EQ.0 .AND. N.GT.0 ) THEN
RESULT( 22 ) = ULPINV
RESULT( 23 ) = ULPINV
RESULT( 24 ) = ULPINV
GO TO 630
END IF
*
* Do tests 22 and 23.
*
DO 600 I = 1, N
D3( I ) = REAL( A( I, I ) )
600 CONTINUE
DO 610 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
610 CONTINUE
CALL SSTT22( N, M2, 0, D3, D4, WA2, D2, Z, LDU, WORK,
$ MAX( 1, M2 ), RESULT( 22 ) )
*
NTEST = 24
DO 620 I = 1, N - 1
D4( I ) = REAL( A( I+1, I ) )
620 CONTINUE
SRNAMT = 'SSTEVR'
CALL SSTEVR( 'N', 'V', N, D3, D4, VL, VU, IL, IU, ABSTOL,
$ M3, WA3, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSTEVR(N,V)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 24 ) = ULPINV
GO TO 630
END IF
END IF
*
* Do test 24.
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
RESULT( 24 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
*
630 CONTINUE
*
*
*
ELSE
*
DO 640 I = 1, 24
RESULT( I ) = ZERO
640 CONTINUE
NTEST = 24
END IF
*
* Perform remaining tests storing upper or lower triangular
* part of matrix.
*
DO 1720 IUPLO = 0, 1
IF( IUPLO.EQ.0 ) THEN
UPLO = 'L'
ELSE
UPLO = 'U'
END IF
*
* 4) Call SSYEV and SSYEVX.
*
CALL SLACPY( ' ', N, N, A, LDA, V, LDU )
*
NTEST = NTEST + 1
SRNAMT = 'SSYEV'
CALL SSYEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEV(V,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 660
END IF
END IF
*
* Do tests 25 and 26 (or +54)
*
CALL SSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 2
SRNAMT = 'SSYEV'
CALL SSYEV( 'N', UPLO, N, A, LDU, D3, WORK, LWORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEV(N,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 660
END IF
END IF
*
* Do test 27 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 650 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
650 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
660 CONTINUE
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 1
*
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
IF( IL.NE.1 ) THEN
VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
IF( IU.NE.N ) THEN
VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
ELSE
TEMP3 = ZERO
VL = ZERO
VU = ONE
END IF
*
SRNAMT = 'SSYEVX'
CALL SSYEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 680
END IF
END IF
*
* Do tests 28 and 29 (or +54)
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL SSYT21( 1, UPLO, N, 0, A, LDU, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
SRNAMT = 'SSYEVX'
CALL SSYEVX( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVX(N,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 680
END IF
END IF
*
* Do test 30 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 670 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
670 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
680 CONTINUE
*
NTEST = NTEST + 1
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVX'
CALL SSYEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 690
END IF
END IF
*
* Do tests 31 and 32 (or +54)
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVX'
CALL SSYEVX( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVX(N,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 690
END IF
END IF
*
* Do test 33 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, ULP*TEMP3 )
690 CONTINUE
*
NTEST = NTEST + 1
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVX'
CALL SSYEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVX(V,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 700
END IF
END IF
*
* Do tests 34 and 35 (or +54)
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVX'
CALL SSYEVX( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVX(N,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 700
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 700
END IF
*
* Do test 36 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
700 CONTINUE
*
* 5) Call SSPEV and SSPEVX.
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
* Load array WORK with the upper or lower triangular
* part of the matrix in packed form.
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 720 J = 1, N
DO 710 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
710 CONTINUE
720 CONTINUE
ELSE
INDX = 1
DO 740 J = 1, N
DO 730 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
730 CONTINUE
740 CONTINUE
END IF
*
NTEST = NTEST + 1
SRNAMT = 'SSPEV'
CALL SSPEV( 'V', UPLO, N, WORK, D1, Z, LDU, V, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEV(V,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 800
END IF
END IF
*
* Do tests 37 and 38 (or +54)
*
CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 760 J = 1, N
DO 750 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
750 CONTINUE
760 CONTINUE
ELSE
INDX = 1
DO 780 J = 1, N
DO 770 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
770 CONTINUE
780 CONTINUE
END IF
*
NTEST = NTEST + 2
SRNAMT = 'SSPEV'
CALL SSPEV( 'N', UPLO, N, WORK, D3, Z, LDU, V, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEV(N,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 800
END IF
END IF
*
* Do test 39 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 790 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
790 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
* Load array WORK with the upper or lower triangular part
* of the matrix in packed form.
*
800 CONTINUE
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 820 J = 1, N
DO 810 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
810 CONTINUE
820 CONTINUE
ELSE
INDX = 1
DO 840 J = 1, N
DO 830 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
830 CONTINUE
840 CONTINUE
END IF
*
NTEST = NTEST + 1
*
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
IF( IL.NE.1 ) THEN
VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
IF( IU.NE.N ) THEN
VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
ELSE IF( N.GT.0 ) THEN
VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
$ TEN*ULP*TEMP3, TEN*RTUNFL )
END IF
ELSE
TEMP3 = ZERO
VL = ZERO
VU = ONE
END IF
*
SRNAMT = 'SSPEVX'
CALL SSPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M, WA1, Z, LDU, V, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 900
END IF
END IF
*
* Do tests 40 and 41 (or +54)
*
CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 860 J = 1, N
DO 850 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
850 CONTINUE
860 CONTINUE
ELSE
INDX = 1
DO 880 J = 1, N
DO 870 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
870 CONTINUE
880 CONTINUE
END IF
*
SRNAMT = 'SSPEVX'
CALL SSPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 900
END IF
END IF
*
* Do test 42 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 890 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
890 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
900 CONTINUE
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 920 J = 1, N
DO 910 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
910 CONTINUE
920 CONTINUE
ELSE
INDX = 1
DO 940 J = 1, N
DO 930 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
930 CONTINUE
940 CONTINUE
END IF
*
NTEST = NTEST + 1
*
SRNAMT = 'SSPEVX'
CALL SSPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 990
END IF
END IF
*
* Do tests 43 and 44 (or +54)
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 960 J = 1, N
DO 950 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
950 CONTINUE
960 CONTINUE
ELSE
INDX = 1
DO 980 J = 1, N
DO 970 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
970 CONTINUE
980 CONTINUE
END IF
*
SRNAMT = 'SSPEVX'
CALL SSPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, V, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 990
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 990
END IF
*
* Do test 45 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
990 CONTINUE
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 1010 J = 1, N
DO 1000 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1000 CONTINUE
1010 CONTINUE
ELSE
INDX = 1
DO 1030 J = 1, N
DO 1020 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1020 CONTINUE
1030 CONTINUE
END IF
*
NTEST = NTEST + 1
*
SRNAMT = 'SSPEVX'
CALL SSPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, V, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVX(V,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1080
END IF
END IF
*
* Do tests 46 and 47 (or +54)
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 1050 J = 1, N
DO 1040 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1040 CONTINUE
1050 CONTINUE
ELSE
INDX = 1
DO 1070 J = 1, N
DO 1060 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1060 CONTINUE
1070 CONTINUE
END IF
*
SRNAMT = 'SSPEVX'
CALL SSPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, V, IWORK,
$ IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVX(N,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1080
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 1080
END IF
*
* Do test 48 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
1080 CONTINUE
*
* 6) Call SSBEV and SSBEVX.
*
IF( JTYPE.LE.7 ) THEN
KD = 1
ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
KD = MAX( N-1, 0 )
ELSE
KD = IHBW
END IF
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
IF( IUPLO.EQ.1 ) THEN
DO 1100 J = 1, N
DO 1090 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1090 CONTINUE
1100 CONTINUE
ELSE
DO 1120 J = 1, N
DO 1110 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1110 CONTINUE
1120 CONTINUE
END IF
*
NTEST = NTEST + 1
SRNAMT = 'SSBEV'
CALL SSBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEV(V,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1180
END IF
END IF
*
* Do tests 49 and 50 (or ... )
*
CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
DO 1140 J = 1, N
DO 1130 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1130 CONTINUE
1140 CONTINUE
ELSE
DO 1160 J = 1, N
DO 1150 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1150 CONTINUE
1160 CONTINUE
END IF
*
NTEST = NTEST + 2
SRNAMT = 'SSBEV'
CALL SSBEV( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEV(N,' // UPLO // ')',
$ IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1180
END IF
END IF
*
* Do test 51 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1170 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
1170 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
1180 CONTINUE
IF( IUPLO.EQ.1 ) THEN
DO 1200 J = 1, N
DO 1190 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1190 CONTINUE
1200 CONTINUE
ELSE
DO 1220 J = 1, N
DO 1210 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1210 CONTINUE
1220 CONTINUE
END IF
*
NTEST = NTEST + 1
SRNAMT = 'SSBEVX'
CALL SSBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M, WA2, Z, LDU, WORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1280
END IF
END IF
*
* Do tests 52 and 53 (or +54)
*
CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA2, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
DO 1240 J = 1, N
DO 1230 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1230 CONTINUE
1240 CONTINUE
ELSE
DO 1260 J = 1, N
DO 1250 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1250 CONTINUE
1260 CONTINUE
END IF
*
SRNAMT = 'SSBEVX'
CALL SSBEVX( 'N', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVX(N,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1280
END IF
END IF
*
* Do test 54 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1270 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA2( J ) ), ABS( WA3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA2( J )-WA3( J ) ) )
1270 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
1280 CONTINUE
NTEST = NTEST + 1
IF( IUPLO.EQ.1 ) THEN
DO 1300 J = 1, N
DO 1290 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1290 CONTINUE
1300 CONTINUE
ELSE
DO 1320 J = 1, N
DO 1310 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1310 CONTINUE
1320 CONTINUE
END IF
*
SRNAMT = 'SSBEVX'
CALL SSBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1370
END IF
END IF
*
* Do tests 55 and 56 (or +54)
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
DO 1340 J = 1, N
DO 1330 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1330 CONTINUE
1340 CONTINUE
ELSE
DO 1360 J = 1, N
DO 1350 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1350 CONTINUE
1360 CONTINUE
END IF
*
SRNAMT = 'SSBEVX'
CALL SSBEVX( 'N', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVX(N,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1370
END IF
END IF
*
* Do test 57 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
1370 CONTINUE
NTEST = NTEST + 1
IF( IUPLO.EQ.1 ) THEN
DO 1390 J = 1, N
DO 1380 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1380 CONTINUE
1390 CONTINUE
ELSE
DO 1410 J = 1, N
DO 1400 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1400 CONTINUE
1410 CONTINUE
END IF
*
SRNAMT = 'SSBEVX'
CALL SSBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVX(V,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1460
END IF
END IF
*
* Do tests 58 and 59 (or +54)
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
*
IF( IUPLO.EQ.1 ) THEN
DO 1430 J = 1, N
DO 1420 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1420 CONTINUE
1430 CONTINUE
ELSE
DO 1450 J = 1, N
DO 1440 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1440 CONTINUE
1450 CONTINUE
END IF
*
SRNAMT = 'SSBEVX'
CALL SSBEVX( 'N', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
$ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
$ IWORK, IWORK( 5*N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVX(N,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1460
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 1460
END IF
*
* Do test 60 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
1460 CONTINUE
*
* 7) Call SSYEVD
*
CALL SLACPY( ' ', N, N, A, LDA, V, LDU )
*
NTEST = NTEST + 1
SRNAMT = 'SSYEVD'
CALL SSYEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
$ IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVD(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1480
END IF
END IF
*
* Do tests 61 and 62 (or +54)
*
CALL SSYT21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
NTEST = NTEST + 2
SRNAMT = 'SSYEVD'
CALL SSYEVD( 'N', UPLO, N, A, LDU, D3, WORK, LWEDC,
$ IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVD(N,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1480
END IF
END IF
*
* Do test 63 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1470 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
1470 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
1480 CONTINUE
*
* 8) Call SSPEVD.
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
* Load array WORK with the upper or lower triangular
* part of the matrix in packed form.
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 1500 J = 1, N
DO 1490 I = 1, J
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1490 CONTINUE
1500 CONTINUE
ELSE
INDX = 1
DO 1520 J = 1, N
DO 1510 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1510 CONTINUE
1520 CONTINUE
END IF
*
NTEST = NTEST + 1
SRNAMT = 'SSPEVD'
CALL SSPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
$ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVD(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1580
END IF
END IF
*
* Do tests 64 and 65 (or +54)
*
CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
INDX = 1
DO 1540 J = 1, N
DO 1530 I = 1, J
*
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1530 CONTINUE
1540 CONTINUE
ELSE
INDX = 1
DO 1560 J = 1, N
DO 1550 I = J, N
WORK( INDX ) = A( I, J )
INDX = INDX + 1
1550 CONTINUE
1560 CONTINUE
END IF
*
NTEST = NTEST + 2
SRNAMT = 'SSPEVD'
CALL SSPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
$ WORK( INDX ), LWEDC-INDX+1, IWORK, LIWEDC,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSPEVD(N,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1580
END IF
END IF
*
* Do test 66 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1570 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
1570 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
1580 CONTINUE
*
* 9) Call SSBEVD.
*
IF( JTYPE.LE.7 ) THEN
KD = 1
ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
KD = MAX( N-1, 0 )
ELSE
KD = IHBW
END IF
*
* Load array V with the upper or lower triangular part
* of the matrix in band form.
*
IF( IUPLO.EQ.1 ) THEN
DO 1600 J = 1, N
DO 1590 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1590 CONTINUE
1600 CONTINUE
ELSE
DO 1620 J = 1, N
DO 1610 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1610 CONTINUE
1620 CONTINUE
END IF
*
NTEST = NTEST + 1
SRNAMT = 'SSBEVD'
CALL SSBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
$ LWEDC, IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVD(V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1680
END IF
END IF
*
* Do tests 67 and 68 (or +54)
*
CALL SSYT21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
IF( IUPLO.EQ.1 ) THEN
DO 1640 J = 1, N
DO 1630 I = MAX( 1, J-KD ), J
V( KD+1+I-J, J ) = A( I, J )
1630 CONTINUE
1640 CONTINUE
ELSE
DO 1660 J = 1, N
DO 1650 I = J, MIN( N, J+KD )
V( 1+I-J, J ) = A( I, J )
1650 CONTINUE
1660 CONTINUE
END IF
*
NTEST = NTEST + 2
SRNAMT = 'SSBEVD'
CALL SSBEVD( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
$ LWEDC, IWORK, LIWEDC, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSBEVD(N,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1680
END IF
END IF
*
* Do test 69 (or +54)
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1670 J = 1, N
TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
1670 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
1680 CONTINUE
*
*
CALL SLACPY( ' ', N, N, A, LDA, V, LDU )
NTEST = NTEST + 1
SRNAMT = 'SSYEVR'
CALL SSYEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1700
END IF
END IF
*
* Do tests 70 and 71 (or ... )
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL SSYT21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
$ LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
SRNAMT = 'SSYEVR'
CALL SSYEVR( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVR(N,A,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1700
END IF
END IF
*
* Do test 72 (or ... )
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 1690 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
1690 CONTINUE
RESULT( NTEST ) = TEMP2 / MAX( UNFL,
$ ULP*MAX( TEMP1, TEMP2 ) )
*
1700 CONTINUE
*
NTEST = NTEST + 1
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVR'
CALL SSYEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 1710
END IF
END IF
*
* Do tests 73 and 74 (or +54)
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVR'
CALL SSYEVR( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVR(N,I,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 1710
END IF
END IF
*
* Do test 75 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, ULP*TEMP3 )
1710 CONTINUE
*
NTEST = NTEST + 1
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVR'
CALL SSYEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVR(V,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
RESULT( NTEST+1 ) = ULPINV
RESULT( NTEST+2 ) = ULPINV
GO TO 700
END IF
END IF
*
* Do tests 76 and 77 (or +54)
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
CALL SSYT22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
$ V, LDU, TAU, WORK, RESULT( NTEST ) )
*
NTEST = NTEST + 2
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
SRNAMT = 'SSYEVR'
CALL SSYEVR( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
$ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
$ IWORK(2*N+1), LIWORK-2*N, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'SSYEVR(N,V,' // UPLO //
$ ')', IINFO, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( NTEST ) = ULPINV
GO TO 700
END IF
END IF
*
IF( M3.EQ.0 .AND. N.GT.0 ) THEN
RESULT( NTEST ) = ULPINV
GO TO 700
END IF
*
* Do test 78 (or +54)
*
TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
IF( N.GT.0 ) THEN
TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
ELSE
TEMP3 = ZERO
END IF
RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
$ MAX( UNFL, TEMP3*ULP )
*
CALL SLACPY( ' ', N, N, V, LDU, A, LDA )
*
1720 CONTINUE
*
* End of Loop -- Check for RESULT(j) > THRESH
*
NTESTT = NTESTT + NTEST
*
CALL SLAFTS( 'SST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
$ THRESH, NOUNIT, NERRS )
*
1730 CONTINUE
1740 CONTINUE
*
* Summary
*
CALL ALASVM( 'SST', NOUNIT, NERRS, NTESTT, 0 )
*
9999 FORMAT( ' SDRVST: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
RETURN
*
* End of SDRVST
*
END