You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
12 KiB
365 lines
12 KiB
*> \brief \b SGET39
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGET39( RMAX, LMAX, NINFO, KNT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER KNT, LMAX, NINFO
|
|
* REAL RMAX
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGET39 tests SLAQTR, a routine for solving the real or
|
|
*> special complex quasi upper triangular system
|
|
*>
|
|
*> op(T)*p = scale*c,
|
|
*> or
|
|
*> op(T + iB)*(p+iq) = scale*(c+id),
|
|
*>
|
|
*> in real arithmetic. T is upper quasi-triangular.
|
|
*> If it is complex, then the first diagonal block of T must be
|
|
*> 1 by 1, B has the special structure
|
|
*>
|
|
*> B = [ b(1) b(2) ... b(n) ]
|
|
*> [ w ]
|
|
*> [ w ]
|
|
*> [ . ]
|
|
*> [ w ]
|
|
*>
|
|
*> op(A) = A or A', where A' denotes the conjugate transpose of
|
|
*> the matrix A.
|
|
*>
|
|
*> On input, X = [ c ]. On output, X = [ p ].
|
|
*> [ d ] [ q ]
|
|
*>
|
|
*> Scale is an output less than or equal to 1, chosen to avoid
|
|
*> overflow in X.
|
|
*> This subroutine is specially designed for the condition number
|
|
*> estimation in the eigenproblem routine STRSNA.
|
|
*>
|
|
*> The test code verifies that the following residual is order 1:
|
|
*>
|
|
*> ||(T+i*B)*(x1+i*x2) - scale*(d1+i*d2)||
|
|
*> -----------------------------------------
|
|
*> max(ulp*(||T||+||B||)*(||x1||+||x2||),
|
|
*> (||T||+||B||)*smlnum/ulp,
|
|
*> smlnum)
|
|
*>
|
|
*> (The (||T||+||B||)*smlnum/ulp term accounts for possible
|
|
*> (gradual or nongradual) underflow in x1 and x2.)
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[out] RMAX
|
|
*> \verbatim
|
|
*> RMAX is REAL
|
|
*> Value of the largest test ratio.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] LMAX
|
|
*> \verbatim
|
|
*> LMAX is INTEGER
|
|
*> Example number where largest test ratio achieved.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] NINFO
|
|
*> \verbatim
|
|
*> NINFO is INTEGER
|
|
*> Number of examples where INFO is nonzero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] KNT
|
|
*> \verbatim
|
|
*> KNT is INTEGER
|
|
*> Total number of examples tested.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGET39( RMAX, LMAX, NINFO, KNT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER KNT, LMAX, NINFO
|
|
REAL RMAX
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER LDT, LDT2
|
|
PARAMETER ( LDT = 10, LDT2 = 2*LDT )
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0, ONE = 1.0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, INFO, IVM1, IVM2, IVM3, IVM4, IVM5, J, K, N,
|
|
$ NDIM
|
|
REAL BIGNUM, DOMIN, DUMM, EPS, NORM, NORMTB, RESID,
|
|
$ SCALE, SMLNUM, W, XNORM
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ISAMAX
|
|
REAL SASUM, SDOT, SLAMCH, SLANGE
|
|
EXTERNAL ISAMAX, SASUM, SDOT, SLAMCH, SLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SCOPY, SGEMV, SLAQTR
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, COS, MAX, REAL, SIN, SQRT
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER IDIM( 6 ), IVAL( 5, 5, 6 )
|
|
REAL B( LDT ), D( LDT2 ), DUM( 1 ), T( LDT, LDT ),
|
|
$ VM1( 5 ), VM2( 5 ), VM3( 5 ), VM4( 5 ),
|
|
$ VM5( 3 ), WORK( LDT ), X( LDT2 ), Y( LDT2 )
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA IDIM / 4, 5*5 /
|
|
DATA IVAL / 3, 4*0, 1, 1, -1, 0, 0, 3, 2, 1, 0, 0,
|
|
$ 4, 3, 2, 2, 0, 5*0, 1, 4*0, 2, 2, 3*0, 3, 3, 4,
|
|
$ 0, 0, 4, 2, 2, 3, 0, 4*1, 5, 1, 4*0, 2, 4, -2,
|
|
$ 0, 0, 3, 3, 4, 0, 0, 4, 2, 2, 3, 0, 5*1, 1,
|
|
$ 4*0, 2, 1, -1, 0, 0, 9, 8, 1, 0, 0, 4, 9, 1, 2,
|
|
$ -1, 5*2, 9, 4*0, 6, 4, 0, 0, 0, 3, 2, 1, 1, 0,
|
|
$ 5, 1, -1, 1, 0, 5*2, 4, 4*0, 2, 2, 0, 0, 0, 1,
|
|
$ 4, 4, 0, 0, 2, 4, 2, 2, -1, 5*2 /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Get machine parameters
|
|
*
|
|
EPS = SLAMCH( 'P' )
|
|
SMLNUM = SLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Set up test case parameters
|
|
*
|
|
VM1( 1 ) = ONE
|
|
VM1( 2 ) = SQRT( SMLNUM )
|
|
VM1( 3 ) = SQRT( VM1( 2 ) )
|
|
VM1( 4 ) = SQRT( BIGNUM )
|
|
VM1( 5 ) = SQRT( VM1( 4 ) )
|
|
*
|
|
VM2( 1 ) = ONE
|
|
VM2( 2 ) = SQRT( SMLNUM )
|
|
VM2( 3 ) = SQRT( VM2( 2 ) )
|
|
VM2( 4 ) = SQRT( BIGNUM )
|
|
VM2( 5 ) = SQRT( VM2( 4 ) )
|
|
*
|
|
VM3( 1 ) = ONE
|
|
VM3( 2 ) = SQRT( SMLNUM )
|
|
VM3( 3 ) = SQRT( VM3( 2 ) )
|
|
VM3( 4 ) = SQRT( BIGNUM )
|
|
VM3( 5 ) = SQRT( VM3( 4 ) )
|
|
*
|
|
VM4( 1 ) = ONE
|
|
VM4( 2 ) = SQRT( SMLNUM )
|
|
VM4( 3 ) = SQRT( VM4( 2 ) )
|
|
VM4( 4 ) = SQRT( BIGNUM )
|
|
VM4( 5 ) = SQRT( VM4( 4 ) )
|
|
*
|
|
VM5( 1 ) = ONE
|
|
VM5( 2 ) = EPS
|
|
VM5( 3 ) = SQRT( SMLNUM )
|
|
*
|
|
* Initialization
|
|
*
|
|
KNT = 0
|
|
RMAX = ZERO
|
|
NINFO = 0
|
|
SMLNUM = SMLNUM / EPS
|
|
*
|
|
* Begin test loop
|
|
*
|
|
DO 140 IVM5 = 1, 3
|
|
DO 130 IVM4 = 1, 5
|
|
DO 120 IVM3 = 1, 5
|
|
DO 110 IVM2 = 1, 5
|
|
DO 100 IVM1 = 1, 5
|
|
DO 90 NDIM = 1, 6
|
|
*
|
|
N = IDIM( NDIM )
|
|
DO 20 I = 1, N
|
|
DO 10 J = 1, N
|
|
T( I, J ) = REAL( IVAL( I, J, NDIM ) )*
|
|
$ VM1( IVM1 )
|
|
IF( I.GE.J )
|
|
$ T( I, J ) = T( I, J )*VM5( IVM5 )
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
*
|
|
W = ONE*VM2( IVM2 )
|
|
*
|
|
DO 30 I = 1, N
|
|
B( I ) = COS( REAL( I ) )*VM3( IVM3 )
|
|
30 CONTINUE
|
|
*
|
|
DO 40 I = 1, 2*N
|
|
D( I ) = SIN( REAL( I ) )*VM4( IVM4 )
|
|
40 CONTINUE
|
|
*
|
|
NORM = SLANGE( '1', N, N, T, LDT, WORK )
|
|
K = ISAMAX( N, B, 1 )
|
|
NORMTB = NORM + ABS( B( K ) ) + ABS( W )
|
|
*
|
|
CALL SCOPY( N, D, 1, X, 1 )
|
|
KNT = KNT + 1
|
|
CALL SLAQTR( .FALSE., .TRUE., N, T, LDT, DUM,
|
|
$ DUMM, SCALE, X, WORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ NINFO = NINFO + 1
|
|
*
|
|
* || T*x - scale*d || /
|
|
* max(ulp*||T||*||x||,smlnum/ulp*||T||,smlnum)
|
|
*
|
|
CALL SCOPY( N, D, 1, Y, 1 )
|
|
CALL SGEMV( 'No transpose', N, N, ONE, T, LDT,
|
|
$ X, 1, -SCALE, Y, 1 )
|
|
XNORM = SASUM( N, X, 1 )
|
|
RESID = SASUM( N, Y, 1 )
|
|
DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORM,
|
|
$ ( NORM*EPS )*XNORM )
|
|
RESID = RESID / DOMIN
|
|
IF( RESID.GT.RMAX ) THEN
|
|
RMAX = RESID
|
|
LMAX = KNT
|
|
END IF
|
|
*
|
|
CALL SCOPY( N, D, 1, X, 1 )
|
|
KNT = KNT + 1
|
|
CALL SLAQTR( .TRUE., .TRUE., N, T, LDT, DUM,
|
|
$ DUMM, SCALE, X, WORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ NINFO = NINFO + 1
|
|
*
|
|
* || T*x - scale*d || /
|
|
* max(ulp*||T||*||x||,smlnum/ulp*||T||,smlnum)
|
|
*
|
|
CALL SCOPY( N, D, 1, Y, 1 )
|
|
CALL SGEMV( 'Transpose', N, N, ONE, T, LDT, X,
|
|
$ 1, -SCALE, Y, 1 )
|
|
XNORM = SASUM( N, X, 1 )
|
|
RESID = SASUM( N, Y, 1 )
|
|
DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORM,
|
|
$ ( NORM*EPS )*XNORM )
|
|
RESID = RESID / DOMIN
|
|
IF( RESID.GT.RMAX ) THEN
|
|
RMAX = RESID
|
|
LMAX = KNT
|
|
END IF
|
|
*
|
|
CALL SCOPY( 2*N, D, 1, X, 1 )
|
|
KNT = KNT + 1
|
|
CALL SLAQTR( .FALSE., .FALSE., N, T, LDT, B, W,
|
|
$ SCALE, X, WORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ NINFO = NINFO + 1
|
|
*
|
|
* ||(T+i*B)*(x1+i*x2) - scale*(d1+i*d2)|| /
|
|
* max(ulp*(||T||+||B||)*(||x1||+||x2||),
|
|
* smlnum/ulp * (||T||+||B||), smlnum )
|
|
*
|
|
*
|
|
CALL SCOPY( 2*N, D, 1, Y, 1 )
|
|
Y( 1 ) = SDOT( N, B, 1, X( 1+N ), 1 ) +
|
|
$ SCALE*Y( 1 )
|
|
DO 50 I = 2, N
|
|
Y( I ) = W*X( I+N ) + SCALE*Y( I )
|
|
50 CONTINUE
|
|
CALL SGEMV( 'No transpose', N, N, ONE, T, LDT,
|
|
$ X, 1, -ONE, Y, 1 )
|
|
*
|
|
Y( 1+N ) = SDOT( N, B, 1, X, 1 ) -
|
|
$ SCALE*Y( 1+N )
|
|
DO 60 I = 2, N
|
|
Y( I+N ) = W*X( I ) - SCALE*Y( I+N )
|
|
60 CONTINUE
|
|
CALL SGEMV( 'No transpose', N, N, ONE, T, LDT,
|
|
$ X( 1+N ), 1, ONE, Y( 1+N ), 1 )
|
|
*
|
|
RESID = SASUM( 2*N, Y, 1 )
|
|
DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORMTB,
|
|
$ EPS*( NORMTB*SASUM( 2*N, X, 1 ) ) )
|
|
RESID = RESID / DOMIN
|
|
IF( RESID.GT.RMAX ) THEN
|
|
RMAX = RESID
|
|
LMAX = KNT
|
|
END IF
|
|
*
|
|
CALL SCOPY( 2*N, D, 1, X, 1 )
|
|
KNT = KNT + 1
|
|
CALL SLAQTR( .TRUE., .FALSE., N, T, LDT, B, W,
|
|
$ SCALE, X, WORK, INFO )
|
|
IF( INFO.NE.0 )
|
|
$ NINFO = NINFO + 1
|
|
*
|
|
* ||(T+i*B)*(x1+i*x2) - scale*(d1+i*d2)|| /
|
|
* max(ulp*(||T||+||B||)*(||x1||+||x2||),
|
|
* smlnum/ulp * (||T||+||B||), smlnum )
|
|
*
|
|
CALL SCOPY( 2*N, D, 1, Y, 1 )
|
|
Y( 1 ) = B( 1 )*X( 1+N ) - SCALE*Y( 1 )
|
|
DO 70 I = 2, N
|
|
Y( I ) = B( I )*X( 1+N ) + W*X( I+N ) -
|
|
$ SCALE*Y( I )
|
|
70 CONTINUE
|
|
CALL SGEMV( 'Transpose', N, N, ONE, T, LDT, X,
|
|
$ 1, ONE, Y, 1 )
|
|
*
|
|
Y( 1+N ) = B( 1 )*X( 1 ) + SCALE*Y( 1+N )
|
|
DO 80 I = 2, N
|
|
Y( I+N ) = B( I )*X( 1 ) + W*X( I ) +
|
|
$ SCALE*Y( I+N )
|
|
80 CONTINUE
|
|
CALL SGEMV( 'Transpose', N, N, ONE, T, LDT,
|
|
$ X( 1+N ), 1, -ONE, Y( 1+N ), 1 )
|
|
*
|
|
RESID = SASUM( 2*N, Y, 1 )
|
|
DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORMTB,
|
|
$ EPS*( NORMTB*SASUM( 2*N, X, 1 ) ) )
|
|
RESID = RESID / DOMIN
|
|
IF( RESID.GT.RMAX ) THEN
|
|
RMAX = RESID
|
|
LMAX = KNT
|
|
END IF
|
|
*
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SGET39
|
|
*
|
|
END
|
|
|