You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
11 KiB
393 lines
11 KiB
*> \brief \b SGSVTS3
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGSVTS3( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V,
|
|
* LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK,
|
|
* LWORK, RWORK, RESULT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDA, LDB, LDQ, LDR, LDU, LDV, LWORK, M, N, P
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* REAL A( LDA, * ), AF( LDA, * ), ALPHA( * ),
|
|
* $ B( LDB, * ), BETA( * ), BF( LDB, * ),
|
|
* $ Q( LDQ, * ), R( LDR, * ), RESULT( 6 ),
|
|
* $ RWORK( * ), U( LDU, * ), V( LDV, * ),
|
|
* $ WORK( LWORK )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGSVTS3 tests SGGSVD3, which computes the GSVD of an M-by-N matrix A
|
|
*> and a P-by-N matrix B:
|
|
*> U'*A*Q = D1*R and V'*B*Q = D2*R.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] P
|
|
*> \verbatim
|
|
*> P is INTEGER
|
|
*> The number of rows of the matrix B. P >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,M)
|
|
*> The M-by-N matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AF
|
|
*> \verbatim
|
|
*> AF is REAL array, dimension (LDA,N)
|
|
*> Details of the GSVD of A and B, as returned by SGGSVD3,
|
|
*> see SGGSVD3 for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the arrays A and AF.
|
|
*> LDA >= max( 1,M ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB,P)
|
|
*> On entry, the P-by-N matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BF
|
|
*> \verbatim
|
|
*> BF is REAL array, dimension (LDB,N)
|
|
*> Details of the GSVD of A and B, as returned by SGGSVD3,
|
|
*> see SGGSVD3 for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the arrays B and BF.
|
|
*> LDB >= max(1,P).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U
|
|
*> \verbatim
|
|
*> U is REAL array, dimension(LDU,M)
|
|
*> The M by M orthogonal matrix U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of the array U. LDU >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V
|
|
*> \verbatim
|
|
*> V is REAL array, dimension(LDV,M)
|
|
*> The P by P orthogonal matrix V.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V. LDV >= max(1,P).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is REAL array, dimension(LDQ,N)
|
|
*> The N by N orthogonal matrix Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BETA
|
|
*> \verbatim
|
|
*> BETA is REAL array, dimension (N)
|
|
*>
|
|
*> The generalized singular value pairs of A and B, the
|
|
*> ``diagonal'' matrices D1 and D2 are constructed from
|
|
*> ALPHA and BETA, see subroutine SGGSVD3 for details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] R
|
|
*> \verbatim
|
|
*> R is REAL array, dimension(LDQ,N)
|
|
*> The upper triangular matrix R.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDR
|
|
*> \verbatim
|
|
*> LDR is INTEGER
|
|
*> The leading dimension of the array R. LDR >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK,
|
|
*> LWORK >= max(M,P,N)*max(M,P,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (max(M,P,N))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is REAL array, dimension (6)
|
|
*> The test ratios:
|
|
*> RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP)
|
|
*> RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP)
|
|
*> RESULT(3) = norm( I - U'*U ) / ( M*ULP )
|
|
*> RESULT(4) = norm( I - V'*V ) / ( P*ULP )
|
|
*> RESULT(5) = norm( I - Q'*Q ) / ( N*ULP )
|
|
*> RESULT(6) = 0 if ALPHA is in decreasing order;
|
|
*> = ULPINV otherwise.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGSVTS3( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V,
|
|
$ LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK,
|
|
$ LWORK, RWORK, RESULT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDA, LDB, LDQ, LDR, LDU, LDV, LWORK, M, N, P
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
REAL A( LDA, * ), AF( LDA, * ), ALPHA( * ),
|
|
$ B( LDB, * ), BETA( * ), BF( LDB, * ),
|
|
$ Q( LDQ, * ), R( LDR, * ), RESULT( 6 ),
|
|
$ RWORK( * ), U( LDU, * ), V( LDV, * ),
|
|
$ WORK( LWORK )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, INFO, J, K, L
|
|
REAL ANORM, BNORM, RESID, TEMP, ULP, ULPINV, UNFL
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH, SLANGE, SLANSY
|
|
EXTERNAL SLAMCH, SLANGE, SLANSY
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SCOPY, SGEMM, SGGSVD3, SLACPY, SLASET, SSYRK
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN, REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
ULP = SLAMCH( 'Precision' )
|
|
ULPINV = ONE / ULP
|
|
UNFL = SLAMCH( 'Safe minimum' )
|
|
*
|
|
* Copy the matrix A to the array AF.
|
|
*
|
|
CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
|
|
CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
|
|
*
|
|
ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
|
|
BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
|
|
*
|
|
* Factorize the matrices A and B in the arrays AF and BF.
|
|
*
|
|
CALL SGGSVD3( 'U', 'V', 'Q', M, N, P, K, L, AF, LDA, BF, LDB,
|
|
$ ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, LWORK,
|
|
$ IWORK, INFO )
|
|
*
|
|
* Copy R
|
|
*
|
|
DO 20 I = 1, MIN( K+L, M )
|
|
DO 10 J = I, K + L
|
|
R( I, J ) = AF( I, N-K-L+J )
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
*
|
|
IF( M-K-L.LT.0 ) THEN
|
|
DO 40 I = M + 1, K + L
|
|
DO 30 J = I, K + L
|
|
R( I, J ) = BF( I-K, N-K-L+J )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
* Compute A:= U'*A*Q - D1*R
|
|
*
|
|
CALL SGEMM( 'No transpose', 'No transpose', M, N, N, ONE, A, LDA,
|
|
$ Q, LDQ, ZERO, WORK, LDA )
|
|
*
|
|
CALL SGEMM( 'Transpose', 'No transpose', M, N, M, ONE, U, LDU,
|
|
$ WORK, LDA, ZERO, A, LDA )
|
|
*
|
|
DO 60 I = 1, K
|
|
DO 50 J = I, K + L
|
|
A( I, N-K-L+J ) = A( I, N-K-L+J ) - R( I, J )
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
*
|
|
DO 80 I = K + 1, MIN( K+L, M )
|
|
DO 70 J = I, K + L
|
|
A( I, N-K-L+J ) = A( I, N-K-L+J ) - ALPHA( I )*R( I, J )
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
*
|
|
* Compute norm( U'*A*Q - D1*R ) / ( MAX(1,M,N)*norm(A)*ULP ) .
|
|
*
|
|
RESID = SLANGE( '1', M, N, A, LDA, RWORK )
|
|
*
|
|
IF( ANORM.GT.ZERO ) THEN
|
|
RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M, N ) ) ) / ANORM ) /
|
|
$ ULP
|
|
ELSE
|
|
RESULT( 1 ) = ZERO
|
|
END IF
|
|
*
|
|
* Compute B := V'*B*Q - D2*R
|
|
*
|
|
CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, B, LDB,
|
|
$ Q, LDQ, ZERO, WORK, LDB )
|
|
*
|
|
CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, V, LDV,
|
|
$ WORK, LDB, ZERO, B, LDB )
|
|
*
|
|
DO 100 I = 1, L
|
|
DO 90 J = I, L
|
|
B( I, N-L+J ) = B( I, N-L+J ) - BETA( K+I )*R( K+I, K+J )
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
*
|
|
* Compute norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP ) .
|
|
*
|
|
RESID = SLANGE( '1', P, N, B, LDB, RWORK )
|
|
IF( BNORM.GT.ZERO ) THEN
|
|
RESULT( 2 ) = ( ( RESID / REAL( MAX( 1, P, N ) ) ) / BNORM ) /
|
|
$ ULP
|
|
ELSE
|
|
RESULT( 2 ) = ZERO
|
|
END IF
|
|
*
|
|
* Compute I - U'*U
|
|
*
|
|
CALL SLASET( 'Full', M, M, ZERO, ONE, WORK, LDQ )
|
|
CALL SSYRK( 'Upper', 'Transpose', M, M, -ONE, U, LDU, ONE, WORK,
|
|
$ LDU )
|
|
*
|
|
* Compute norm( I - U'*U ) / ( M * ULP ) .
|
|
*
|
|
RESID = SLANSY( '1', 'Upper', M, WORK, LDU, RWORK )
|
|
RESULT( 3 ) = ( RESID / REAL( MAX( 1, M ) ) ) / ULP
|
|
*
|
|
* Compute I - V'*V
|
|
*
|
|
CALL SLASET( 'Full', P, P, ZERO, ONE, WORK, LDV )
|
|
CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, V, LDV, ONE, WORK,
|
|
$ LDV )
|
|
*
|
|
* Compute norm( I - V'*V ) / ( P * ULP ) .
|
|
*
|
|
RESID = SLANSY( '1', 'Upper', P, WORK, LDV, RWORK )
|
|
RESULT( 4 ) = ( RESID / REAL( MAX( 1, P ) ) ) / ULP
|
|
*
|
|
* Compute I - Q'*Q
|
|
*
|
|
CALL SLASET( 'Full', N, N, ZERO, ONE, WORK, LDQ )
|
|
CALL SSYRK( 'Upper', 'Transpose', N, N, -ONE, Q, LDQ, ONE, WORK,
|
|
$ LDQ )
|
|
*
|
|
* Compute norm( I - Q'*Q ) / ( N * ULP ) .
|
|
*
|
|
RESID = SLANSY( '1', 'Upper', N, WORK, LDQ, RWORK )
|
|
RESULT( 5 ) = ( RESID / REAL( MAX( 1, N ) ) ) / ULP
|
|
*
|
|
* Check sorting
|
|
*
|
|
CALL SCOPY( N, ALPHA, 1, WORK, 1 )
|
|
DO 110 I = K + 1, MIN( K+L, M )
|
|
J = IWORK( I )
|
|
IF( I.NE.J ) THEN
|
|
TEMP = WORK( I )
|
|
WORK( I ) = WORK( J )
|
|
WORK( J ) = TEMP
|
|
END IF
|
|
110 CONTINUE
|
|
*
|
|
RESULT( 6 ) = ZERO
|
|
DO 120 I = K + 1, MIN( K+L, M ) - 1
|
|
IF( WORK( I ).LT.WORK( I+1 ) )
|
|
$ RESULT( 6 ) = ULPINV
|
|
120 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SGSVTS3
|
|
*
|
|
END
|
|
|