You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
295 lines
8.4 KiB
295 lines
8.4 KiB
*> \brief \b ZBDT01
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
|
|
* RWORK, RESID )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER KD, LDA, LDPT, LDQ, M, N
|
|
* DOUBLE PRECISION RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), E( * ), RWORK( * )
|
|
* COMPLEX*16 A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
|
|
* $ WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZBDT01 reconstructs a general matrix A from its bidiagonal form
|
|
*> A = Q * B * P**H
|
|
*> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary
|
|
*> matrices and B is bidiagonal.
|
|
*>
|
|
*> The test ratio to test the reduction is
|
|
*> RESID = norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
|
|
*> where EPS is the machine precision.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrices A and Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrices A and P**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KD
|
|
*> \verbatim
|
|
*> KD is INTEGER
|
|
*> If KD = 0, B is diagonal and the array E is not referenced.
|
|
*> If KD = 1, the reduction was performed by xGEBRD; B is upper
|
|
*> bidiagonal if M >= N, and lower bidiagonal if M < N.
|
|
*> If KD = -1, the reduction was performed by xGBBRD; B is
|
|
*> always upper bidiagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> The m by n matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX*16 array, dimension (LDQ,N)
|
|
*> The m by min(m,n) unitary matrix Q in the reduction
|
|
*> A = Q * B * P**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (min(M,N))
|
|
*> The diagonal elements of the bidiagonal matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
|
|
*> The superdiagonal elements of the bidiagonal matrix B if
|
|
*> m >= n, or the subdiagonal elements of B if m < n.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PT
|
|
*> \verbatim
|
|
*> PT is COMPLEX*16 array, dimension (LDPT,N)
|
|
*> The min(m,n) by n unitary matrix P**H in the reduction
|
|
*> A = Q * B * P**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDPT
|
|
*> \verbatim
|
|
*> LDPT is INTEGER
|
|
*> The leading dimension of the array PT.
|
|
*> LDPT >= max(1,min(M,N)).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (M+N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESID
|
|
*> \verbatim
|
|
*> RESID is DOUBLE PRECISION
|
|
*> The test ratio:
|
|
*> norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
|
|
$ RWORK, RESID )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER KD, LDA, LDPT, LDQ, M, N
|
|
DOUBLE PRECISION RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), E( * ), RWORK( * )
|
|
COMPLEX*16 A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
|
|
$ WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J
|
|
DOUBLE PRECISION ANORM, EPS
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH, DZASUM, ZLANGE
|
|
EXTERNAL DLAMCH, DZASUM, ZLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZCOPY, ZGEMV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, DCMPLX, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.LE.0 .OR. N.LE.0 ) THEN
|
|
RESID = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Compute A - Q * B * P**H one column at a time.
|
|
*
|
|
RESID = ZERO
|
|
IF( KD.NE.0 ) THEN
|
|
*
|
|
* B is bidiagonal.
|
|
*
|
|
IF( KD.NE.0 .AND. M.GE.N ) THEN
|
|
*
|
|
* B is upper bidiagonal and M >= N.
|
|
*
|
|
DO 20 J = 1, N
|
|
CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
|
|
DO 10 I = 1, N - 1
|
|
WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
|
|
10 CONTINUE
|
|
WORK( M+N ) = D( N )*PT( N, J )
|
|
CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ,
|
|
$ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
|
|
RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
|
|
20 CONTINUE
|
|
ELSE IF( KD.LT.0 ) THEN
|
|
*
|
|
* B is upper bidiagonal and M < N.
|
|
*
|
|
DO 40 J = 1, N
|
|
CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
|
|
DO 30 I = 1, M - 1
|
|
WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
|
|
30 CONTINUE
|
|
WORK( M+M ) = D( M )*PT( M, J )
|
|
CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
|
|
$ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
|
|
RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
|
|
40 CONTINUE
|
|
ELSE
|
|
*
|
|
* B is lower bidiagonal.
|
|
*
|
|
DO 60 J = 1, N
|
|
CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
|
|
WORK( M+1 ) = D( 1 )*PT( 1, J )
|
|
DO 50 I = 2, M
|
|
WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
|
|
$ D( I )*PT( I, J )
|
|
50 CONTINUE
|
|
CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
|
|
$ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
|
|
RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
|
|
60 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* B is diagonal.
|
|
*
|
|
IF( M.GE.N ) THEN
|
|
DO 80 J = 1, N
|
|
CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
|
|
DO 70 I = 1, N
|
|
WORK( M+I ) = D( I )*PT( I, J )
|
|
70 CONTINUE
|
|
CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ,
|
|
$ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
|
|
RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
|
|
80 CONTINUE
|
|
ELSE
|
|
DO 100 J = 1, N
|
|
CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
|
|
DO 90 I = 1, M
|
|
WORK( M+I ) = D( I )*PT( I, J )
|
|
90 CONTINUE
|
|
CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
|
|
$ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
|
|
RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
|
|
100 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* Compute norm(A - Q * B * P**H) / ( n * norm(A) * EPS )
|
|
*
|
|
ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
|
|
EPS = DLAMCH( 'Precision' )
|
|
*
|
|
IF( ANORM.LE.ZERO ) THEN
|
|
IF( RESID.NE.ZERO )
|
|
$ RESID = ONE / EPS
|
|
ELSE
|
|
IF( ANORM.GE.RESID ) THEN
|
|
RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
|
|
ELSE
|
|
IF( ANORM.LT.ONE ) THEN
|
|
RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
|
|
$ ( DBLE( N )*EPS )
|
|
ELSE
|
|
RESID = MIN( RESID / ANORM, DBLE( N ) ) /
|
|
$ ( DBLE( N )*EPS )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZBDT01
|
|
*
|
|
END
|
|
|