Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

745 lines
26 KiB

! This is a test program for checking the implementations of
! the implementations of the following subroutines
!
! ZGEDMD, for computation of the
! Dynamic Mode Decomposition (DMD)
! ZGEDMDQ, for computation of a
! QR factorization based compressed DMD
!
! Developed and supported by:
! ===========================
! Developed and coded by Zlatko Drmac, Faculty of Science,
! University of Zagreb; drmac@math.hr
! In cooperation with
! AIMdyn Inc., Santa Barbara, CA.
! ========================================================
! How to run the code (compiler, link info)
! ========================================================
! Compile as FORTRAN 90 (or later) and link with BLAS and
! LAPACK libraries.
! NOTE: The code is developed and tested on top of the
! Intel MKL library (versions 2022.0.3 and 2022.2.0),
! using the Intel Fortran compiler.
!
! For developers of the C++ implementation
! ========================================================
! See the LAPACK++ and Template Numerical Toolkit (TNT)
!
! Note on a development of the GPU HP implementation
! ========================================================
! Work in progress. See CUDA, MAGMA, SLATE.
! NOTE: The four SVD subroutines used in this code are
! included as a part of R&D and for the completeness.
! This was also an opportunity to test those SVD codes.
! If the scaling option is used all four are essentially
! equally good. For implementations on HP platforms,
! one can use whichever SVD is available.
!............................................................
!............................................................
!............................................................
!
PROGRAM DMD_TEST
use iso_fortran_env, only: real64
IMPLICIT NONE
integer, parameter :: WP = real64
!............................................................
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
!............................................................
REAL(KIND=WP), ALLOCATABLE, DIMENSION(:) :: RES, &
RES1, RESEX, SINGVX, SINGVQX, WORK
INTEGER , ALLOCATABLE, DIMENSION(:) :: IWORK
REAL(KIND=WP) :: WDUMMY(2)
INTEGER :: IDUMMY(4), ISEED(4)
REAL(KIND=WP) :: ANORM, COND, CONDL, CONDR, EPS, &
TOL, TOL2, SVDIFF, TMP, TMP_AU, &
TMP_FQR, TMP_REZ, TMP_REZQ, TMP_ZXW, &
TMP_EX
!............................................................
COMPLEX(KIND=WP) :: ZMAX
INTEGER :: LZWORK
COMPLEX(KIND=WP), ALLOCATABLE, DIMENSION(:,:) :: ZA, ZAC, &
ZAU, ZF, ZF0, ZF1, ZS, ZW, &
ZX, ZX0, ZY, ZY0, ZY1, ZZ, ZZ1
COMPLEX(KIND=WP), ALLOCATABLE, DIMENSION(:) :: ZDA, ZDR, &
ZDL, ZEIGS, ZEIGSA, ZWORK
COMPLEX(KIND=WP) :: ZDUMMY(22), ZDUM2X2(2,2)
!............................................................
INTEGER :: K, KQ, LDF, LDS, LDA, LDAU, LDW, LDX, LDY, &
LDZ, LIWORK, LWORK, M, N, LLOOP, NRNK, NRNKsp
INTEGER :: i, iJOBREF, iJOBZ, iSCALE, INFO, j, &
NFAIL, NFAIL_AU, NFAIL_F_QR, NFAIL_REZ, &
NFAIL_REZQ, NFAIL_SVDIFF, NFAIL_TOTAL, NFAILQ_TOTAL, &
NFAIL_Z_XV, MODE, MODEL, MODER, WHTSVD, &
WHTSVDsp
INTEGER :: iNRNK, iWHTSVD, K_TRAJ, LWMINOPT
CHARACTER :: GRADE, JOBREF, JOBZ, PIVTNG, RSIGN, &
SCALE, RESIDS, WANTQ, WANTR
LOGICAL :: TEST_QRDMD
!.....external subroutines (BLAS and LAPACK)
EXTERNAL DAXPY, DGEEV, DGEMM, DGEMV, DLACPY, DLASCL
EXTERNAL ZGEEV, ZGEMV, ZLASCL
EXTERNAL ZLARNV, ZLATMR
EXTERNAL ZAXPY, ZGEMM
!.....external subroutines DMD package, part 1
! subroutines under test
EXTERNAL ZGEDMD, ZGEDMDQ
!.....external functions (BLAS and LAPACK)
EXTERNAL DLAMCH, DZNRM2
REAL(KIND=WP) :: DLAMCH, DZNRM2
REAL(KIND=WP) :: ZLANGE
EXTERNAL IZAMAX
INTEGER IZAMAX
EXTERNAL LSAME
LOGICAL LSAME
INTRINSIC ABS, INT, MIN, MAX, SIGN
!............................................................
! The test is always in pairs : ( ZGEDMD and ZGEDMDQ )
! because the test includes comparing the results (in pairs).
!.....................................................................................
TEST_QRDMD = .TRUE. ! This code by default performs tests on ZGEDMDQ
! Since the QR factorizations based algorithm is designed for
! single trajectory data, only single trajectory tests will
! be performed with xGEDMDQ.
WANTQ = 'Q'
WANTR = 'R'
!.................................................................................
EPS = DLAMCH( 'P' ) ! machine precision DP
! Global counters of failures of some particular tests
NFAIL = 0
NFAIL_REZ = 0
NFAIL_REZQ = 0
NFAIL_Z_XV = 0
NFAIL_F_QR = 0
NFAIL_AU = 0
NFAIL_SVDIFF = 0
NFAIL_TOTAL = 0
NFAILQ_TOTAL = 0
DO LLOOP = 1, 4
WRITE(*,*) 'L Loop Index = ', LLOOP
! Set the dimensions of the problem ...
WRITE(*,*) 'M = '
READ(*,*) M
WRITE(*,*) M
! ... and the number of snapshots.
WRITE(*,*) 'N = '
READ(*,*) N
WRITE(*,*) N
! ... Test the dimensions
IF ( ( MIN(M,N) == 0 ) .OR. ( M < N ) ) THEN
WRITE(*,*) 'Bad dimensions. Required: M >= N > 0.'
STOP
END IF
!.............
! The seed inside the LLOOP so that each pass can be reproduced easily.
ISEED(1) = 4
ISEED(2) = 3
ISEED(3) = 2
ISEED(4) = 1
LDA = M
LDF = M
LDX = M
LDY = M
LDW = N
LDZ = M
LDAU = M
LDS = N
TMP_ZXW = ZERO
TMP_AU = ZERO
TMP_REZ = ZERO
TMP_REZQ = ZERO
SVDIFF = ZERO
TMP_EX = ZERO
ALLOCATE( ZA(LDA,M) )
ALLOCATE( ZAC(LDA,M) )
ALLOCATE( ZF(LDF,N+1) )
ALLOCATE( ZF0(LDF,N+1) )
ALLOCATE( ZF1(LDF,N+1) )
ALLOCATE( ZX(LDX,N) )
ALLOCATE( ZX0(LDX,N) )
ALLOCATE( ZY(LDY,N+1) )
ALLOCATE( ZY0(LDY,N+1) )
ALLOCATE( ZY1(LDY,N+1) )
ALLOCATE( ZAU(LDAU,N) )
ALLOCATE( ZW(LDW,N) )
ALLOCATE( ZS(LDS,N) )
ALLOCATE( ZZ(LDZ,N) )
ALLOCATE( ZZ1(LDZ,N) )
ALLOCATE( RES(N) )
ALLOCATE( RES1(N) )
ALLOCATE( RESEX(N) )
ALLOCATE( ZEIGS(N) )
ALLOCATE( SINGVX(N) )
ALLOCATE( SINGVQX(N) )
TOL = M*EPS
! This mimics O(M*N)*EPS bound for accumulated roundoff error.
! The factor 10 is somewhat arbitrary.
TOL2 = 10*M*N*EPS
!.............
DO K_TRAJ = 1, 2
! Number of intial conditions in the simulation/trajectories (1 or 2)
COND = 1.0D4
ZMAX = (1.0D1,1.0D1)
RSIGN = 'F'
GRADE = 'N'
MODEL = 6
CONDL = 1.0D1
MODER = 6
CONDR = 1.0D1
PIVTNG = 'N'
! Loop over all parameter MODE values for ZLATMR (+1,..,+6)
DO MODE = 1, 6
ALLOCATE( IWORK(2*M) )
ALLOCATE( ZDA(M) )
ALLOCATE( ZDL(M) )
ALLOCATE( ZDR(M) )
CALL ZLATMR( M, M, 'N', ISEED, 'N', ZDA, MODE, COND, &
ZMAX, RSIGN, GRADE, ZDL, MODEL, CONDL, &
ZDR, MODER, CONDR, PIVTNG, IWORK, M, M, &
ZERO, -ONE, 'N', ZA, LDA, IWORK(M+1), INFO )
DEALLOCATE( ZDR )
DEALLOCATE( ZDL )
DEALLOCATE( ZDA )
DEALLOCATE( IWORK )
LZWORK = MAX(1,2*M)
ALLOCATE( ZEIGSA(M) )
ALLOCATE( ZWORK(LZWORK) )
ALLOCATE( WORK(2*M) )
ZAC(1:M,1:M) = ZA(1:M,1:M)
CALL ZGEEV( 'N','N', M, ZAC, LDA, ZEIGSA, ZDUM2X2, 2, &
ZDUM2X2, 2, ZWORK, LZWORK, WORK, INFO ) ! LAPACK CALL
DEALLOCATE(WORK)
DEALLOCATE(ZWORK)
TMP = ABS(ZEIGSA(IZAMAX(M, ZEIGSA, 1))) ! The spectral radius of ZA
! Scale the matrix ZA to have unit spectral radius.
CALL ZLASCL( 'G',0, 0, TMP, ONE, M, M, &
ZA, LDA, INFO )
CALL ZLASCL( 'G',0, 0, TMP, ONE, M, 1, &
ZEIGSA, M, INFO )
ANORM = ZLANGE( 'F', M, M, ZA, LDA, WDUMMY )
IF ( K_TRAJ == 2 ) THEN
! generate data as two trajectories
! with two inital conditions
CALL ZLARNV(2, ISEED, M, ZF(1,1) )
DO i = 1, N/2
CALL ZGEMV( 'N', M, M, ZONE, ZA, LDA, ZF(1,i), 1, &
ZZERO, ZF(1,i+1), 1 )
END DO
ZX0(1:M,1:N/2) = ZF(1:M,1:N/2)
ZY0(1:M,1:N/2) = ZF(1:M,2:N/2+1)
CALL ZLARNV(2, ISEED, M, ZF(1,1) )
DO i = 1, N-N/2
CALL ZGEMV( 'N', M, M, ZONE, ZA, LDA, ZF(1,i), 1, &
ZZERO, ZF(1,i+1), 1 )
END DO
ZX0(1:M,N/2+1:N) = ZF(1:M,1:N-N/2)
ZY0(1:M,N/2+1:N) = ZF(1:M,2:N-N/2+1)
ELSE
CALL ZLARNV(2, ISEED, M, ZF(1,1) )
DO i = 1, N
CALL ZGEMV( 'N', M, M, ZONE, ZA, M, ZF(1,i), 1, &
ZZERO, ZF(1,i+1), 1 )
END DO
ZF0(1:M,1:N+1) = ZF(1:M,1:N+1)
ZX0(1:M,1:N) = ZF0(1:M,1:N)
ZY0(1:M,1:N) = ZF0(1:M,2:N+1)
END IF
DEALLOCATE( ZEIGSA )
!........................................................................
DO iJOBZ = 1, 4
SELECT CASE ( iJOBZ )
CASE(1)
JOBZ = 'V'
RESIDS = 'R'
CASE(2)
JOBZ = 'V'
RESIDS = 'N'
CASE(3)
JOBZ = 'F'
RESIDS = 'N'
CASE(4)
JOBZ = 'N'
RESIDS = 'N'
END SELECT
DO iJOBREF = 1, 3
SELECT CASE ( iJOBREF )
CASE(1)
JOBREF = 'R'
CASE(2)
JOBREF = 'E'
CASE(3)
JOBREF = 'N'
END SELECT
DO iSCALE = 1, 4
SELECT CASE ( iSCALE )
CASE(1)
SCALE = 'S'
CASE(2)
SCALE = 'C'
CASE(3)
SCALE = 'Y'
CASE(4)
SCALE = 'N'
END SELECT
DO iNRNK = -1, -2, -1
NRNK = iNRNK
NRNKsp = iNRNK
DO iWHTSVD = 1, 3
! Check all four options to compute the POD basis
! via the SVD.
WHTSVD = iWHTSVD
WHTSVDsp = iWHTSVD
DO LWMINOPT = 1, 2
! Workspace query for the minimal (1) and for the optimal
! (2) workspace lengths determined by workspace query.
! ZGEDMD is always tested and its results are also used for
! comparisons with ZGEDMDQ.
ZX(1:M,1:N) = ZX0(1:M,1:N)
ZY(1:M,1:N) = ZY0(1:M,1:N)
CALL ZGEDMD( SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, &
M, N, ZX, LDX, ZY, LDY, NRNK, TOL, &
K, ZEIGS, ZZ, LDZ, RES, ZAU, LDAU, &
ZW, LDW, ZS, LDS, ZDUMMY, -1, &
WDUMMY, -1, IDUMMY, -1, INFO )
IF ( (INFO .EQ. 2) .OR. ( INFO .EQ. 3 ) &
.OR. ( INFO < 0 ) ) THEN
WRITE(*,*) 'Call to ZGEDMD workspace query failed. &
&Check the calling sequence and the code.'
WRITE(*,*) 'The error code is ', INFO
WRITE(*,*) 'The input parameters were ', &
SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, &
M, N, LDX, LDY, NRNK, TOL, LDZ, LDAU, LDW, LDS
STOP
END IF
LZWORK = INT(ZDUMMY(LWMINOPT))
LWORK = INT(WDUMMY(1))
LIWORK = IDUMMY(1)
ALLOCATE(ZWORK(LZWORK))
ALLOCATE( WORK(LWORK))
ALLOCATE(IWORK(LIWORK))
CALL ZGEDMD( SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, &
M, N, ZX, LDX, ZY, LDY, NRNK, TOL, &
K, ZEIGS, ZZ, LDZ, RES, ZAU, LDAU, &
ZW, LDW, ZS, LDS, ZWORK, LZWORK, &
WORK, LWORK, IWORK, LIWORK, INFO )
IF ( INFO /= 0 ) THEN
WRITE(*,*) 'Call to ZGEDMD failed. &
&Check the calling sequence and the code.'
WRITE(*,*) 'The error code is ', INFO
WRITE(*,*) 'The input parameters were ',&
SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, &
M, N, LDX, LDY, NRNK, TOL
STOP
END IF
SINGVX(1:N) = WORK(1:N)
!...... ZGEDMD check point
IF ( LSAME(JOBZ,'V') ) THEN
! Check that Z = X*W, on return from ZGEDMD
! This checks that the returned eigenvectors in Z are
! the product of the SVD'POD basis returned in X
! and the eigenvectors of the rayleigh quotient
! returned in W
CALL ZGEMM( 'N', 'N', M, K, K, ZONE, ZX, LDX, ZW, LDW, &
ZZERO, ZZ1, LDZ )
TMP = ZERO
DO i = 1, K
CALL ZAXPY( M, -ZONE, ZZ(1,i), 1, ZZ1(1,i), 1)
TMP = MAX(TMP, DZNRM2( M, ZZ1(1,i), 1 ) )
END DO
TMP_ZXW = MAX(TMP_ZXW, TMP )
IF ( TMP_ZXW <= 10*M*EPS ) THEN
!WRITE(*,*) ' :) .... OK .........ZGEDMD PASSED.'
ELSE
NFAIL_Z_XV = NFAIL_Z_XV + 1
WRITE(*,*) ':( .................ZGEDMD FAILED!', &
'Check the code for implementation errors.'
WRITE(*,*) 'The input parameters were ',&
SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, &
M, N, LDX, LDY, NRNK, TOL
END IF
END IF
!...... ZGEDMD check point
IF ( LSAME(JOBREF,'R') ) THEN
! The matrix A*U is returned for computing refined Ritz vectors.
! Check that A*U is computed correctly using the formula
! A*U = Y * V * inv(SIGMA). This depends on the
! accuracy in the computed singular values and vectors of X.
! See the paper for an error analysis.
! Note that the left singular vectors of the input matrix X
! are returned in the array X.
CALL ZGEMM( 'N', 'N', M, K, M, ZONE, ZA, LDA, ZX, LDX, &
ZZERO, ZZ1, LDZ )
TMP = ZERO
DO i = 1, K
CALL ZAXPY( M, -ZONE, ZAU(1,i), 1, ZZ1(1,i), 1)
TMP = MAX( TMP, DZNRM2( M, ZZ1(1,i),1 ) * &
SINGVX(K)/(ANORM*SINGVX(1)) )
END DO
TMP_AU = MAX( TMP_AU, TMP )
IF ( TMP <= TOL2 ) THEN
!WRITE(*,*) ':) .... OK .........ZGEDMD PASSED.'
ELSE
NFAIL_AU = NFAIL_AU + 1
WRITE(*,*) ':( .................ZGEDMD FAILED!', &
'Check the code for implementation errors.'
WRITE(*,*) 'The input parameters were ',&
SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, &
M, N, LDX, LDY, NRNK, TOL
END IF
ELSEIF ( LSAME(JOBREF,'E') ) THEN
! The unscaled vectors of the Exact DMD are computed.
! This option is included for the sake of completeness,
! for users who prefer the Exact DMD vectors. The
! returned vectors are in the real form, in the same way
! as the Ritz vectors. Here we just save the vectors
! and test them separately using a Matlab script.
CALL ZGEMM( 'N', 'N', M, K, M, ZONE, ZA, LDA, ZAU, LDAU, ZZERO, ZY1, LDY )
DO i=1, K
! have a real eigenvalue with real eigenvector
CALL ZAXPY( M, -ZEIGS(i), ZAU(1,i), 1, ZY1(1,i), 1 )
RESEX(i) = DZNRM2( M, ZY1(1,i), 1) / DZNRM2(M,ZAU(1,i),1)
END DO
END IF
!...... ZGEDMD check point
IF ( LSAME(RESIDS, 'R') ) THEN
! Compare the residuals returned by ZGEDMD with the
! explicitly computed residuals using the matrix A.
! Compute explicitly Y1 = A*Z
CALL ZGEMM( 'N', 'N', M, K, M, ZONE, ZA, LDA, ZZ, LDZ, ZZERO, ZY1, LDY )
! ... and then A*Z(:,i) - LAMBDA(i)*Z(:,i), using the real forms
! of the invariant subspaces that correspond to complex conjugate
! pairs of eigencalues. (See the description of Z in ZGEDMD,)
DO i=1, K
! have a real eigenvalue with real eigenvector
CALL ZAXPY( M, -ZEIGS(i), ZZ(1,i), 1, ZY1(1,i), 1 )
RES1(i) = DZNRM2( M, ZY1(1,i), 1)
END DO
TMP = ZERO
DO i = 1, K
TMP = MAX( TMP, ABS(RES(i) - RES1(i)) * &
SINGVX(K)/(ANORM*SINGVX(1)) )
END DO
TMP_REZ = MAX( TMP_REZ, TMP )
IF ( TMP <= TOL2 ) THEN
!WRITE(*,*) ':) .... OK ..........ZGEDMD PASSED.'
ELSE
NFAIL_REZ = NFAIL_REZ + 1
WRITE(*,*) ':( ..................ZGEDMD FAILED!', &
'Check the code for implementation errors.'
WRITE(*,*) 'The input parameters were ',&
SCALE, JOBZ, RESIDS, JOBREF, WHTSVD, &
M, N, LDX, LDY, NRNK, TOL
END IF
IF ( LSAME(JOBREF,'E') ) THEN
TMP = ZERO
DO i = 1, K
TMP = MAX( TMP, ABS(RES1(i) - RESEX(i))/(RES1(i)+RESEX(i)) )
END DO
TMP_EX = MAX(TMP_EX,TMP)
END IF
END IF
DEALLOCATE(ZWORK)
DEALLOCATE(WORK)
DEALLOCATE(IWORK)
IF ( TEST_QRDMD .AND. (K_TRAJ == 1) ) THEN
ZF(1:M,1:N+1) = ZF0(1:M,1:N+1)
CALL ZGEDMDQ( SCALE, JOBZ, RESIDS, WANTQ, WANTR, JOBREF, &
WHTSVD, M, N+1, ZF, LDF, ZX, LDX, ZY, LDY, &
NRNK, TOL, K, ZEIGS, ZZ, LDZ, RES, ZAU, &
LDAU, ZW, LDW, ZS, LDS, ZDUMMY, -1, &
WDUMMY, -1, IDUMMY, -1, INFO )
LZWORK = INT(ZDUMMY(LWMINOPT))
ALLOCATE( ZWORK(LZWORK) )
LIWORK = IDUMMY(1)
ALLOCATE(IWORK(LIWORK))
LWORK = INT(WDUMMY(1))
ALLOCATE(WORK(LWORK))
CALL ZGEDMDQ( SCALE, JOBZ, RESIDS, WANTQ, WANTR, JOBREF, &
WHTSVD, M, N+1, ZF, LDF, ZX, LDX, ZY, LDY, &
NRNK, TOL, KQ, ZEIGS, ZZ, LDZ, RES, ZAU, &
LDAU, ZW, LDW, ZS, LDS, ZWORK, LZWORK, &
WORK, LWORK, IWORK, LIWORK, INFO )
IF ( INFO /= 0 ) THEN
WRITE(*,*) 'Call to ZGEDMDQ failed. &
&Check the calling sequence and the code.'
WRITE(*,*) 'The error code is ', INFO
WRITE(*,*) 'The input parameters were ',&
SCALE, JOBZ, RESIDS, WANTQ, WANTR, WHTSVD, &
M, N, LDX, LDY, NRNK, TOL
STOP
END IF
SINGVQX(1:N) = WORK(1:N)
!..... ZGEDMDQ check point
IF ( 1 == 0 ) THEN
! Comparison of ZGEDMD and ZGEDMDQ singular values disabled
TMP = ZERO
DO i = 1, MIN(K, KQ)
TMP = MAX(TMP, ABS(SINGVX(i)-SINGVQX(i)) / &
SINGVX(1) )
END DO
SVDIFF = MAX( SVDIFF, TMP )
IF ( TMP > M*N*EPS ) THEN
WRITE(*,*) 'FAILED! Something was wrong with the run.'
NFAIL_SVDIFF = NFAIL_SVDIFF + 1
DO j =1, 3
write(*,*) j, SINGVX(j), SINGVQX(j)
read(*,*)
END DO
END IF
END IF
!..... ZGEDMDQ check point
IF ( LSAME(WANTQ,'Q') .AND. LSAME(WANTR,'R') ) THEN
! Check that the QR factors are computed and returned
! as requested. The residual ||F-Q*R||_F / ||F||_F
! is compared to M*N*EPS.
ZF1(1:M,1:N+1) = ZF0(1:M,1:N+1)
CALL ZGEMM( 'N', 'N', M, N+1, MIN(M,N+1), -ZONE, ZF, &
LDF, ZY, LDY, ZONE, ZF1, LDF )
TMP_FQR = ZLANGE( 'F', M, N+1, ZF1, LDF, WORK ) / &
ZLANGE( 'F', M, N+1, ZF0, LDF, WORK )
IF ( TMP_FQR > TOL2 ) THEN
WRITE(*,*) 'FAILED! Something was wrong with the run.'
NFAIL_F_QR = NFAIL_F_QR + 1
ELSE
!WRITE(*,*) '........ PASSED.'
END IF
END IF
!..... ZGEDMDQ check point
IF ( LSAME(RESIDS, 'R') ) THEN
! Compare the residuals returned by ZGEDMDQ with the
! explicitly computed residuals using the matrix A.
! Compute explicitly Y1 = A*Z
CALL ZGEMM( 'N', 'N', M, KQ, M, ZONE, ZA, LDA, ZZ, LDZ, ZZERO, ZY1, LDY )
! ... and then A*Z(:,i) - LAMBDA(i)*Z(:,i), using the real forms
! of the invariant subspaces that correspond to complex conjugate
! pairs of eigencalues. (See the description of Z in ZGEDMDQ)
DO i=1, KQ
! have a real eigenvalue with real eigenvector
CALL ZAXPY( M, -ZEIGS(i), ZZ(1,i), 1, ZY1(1,i), 1 )
! Y(1:M,i) = Y(1:M,i) - REIG(i)*Z(1:M,i)
RES1(i) = DZNRM2( M, ZY1(1,i), 1)
END DO
TMP = ZERO
DO i = 1, KQ
TMP = MAX( TMP, ABS(RES(i) - RES1(i)) * &
SINGVQX(KQ)/(ANORM*SINGVQX(1)) )
END DO
TMP_REZQ = MAX( TMP_REZQ, TMP )
IF ( TMP <= TOL2 ) THEN
!WRITE(*,*) '.... OK ........ ZGEDMDQ PASSED.'
ELSE
NFAIL_REZQ = NFAIL_REZQ + 1
WRITE(*,*) '................ ZGEDMDQ FAILED!', &
'Check the code for implementation errors.'
STOP
END IF
END IF
DEALLOCATE( ZWORK )
DEALLOCATE( WORK )
DEALLOCATE( IWORK )
END IF ! ZGEDMDQ
!.......................................................................................................
END DO ! LWMINOPT
!write(*,*) 'LWMINOPT loop completed'
END DO ! iWHTSVD
!write(*,*) 'WHTSVD loop completed'
END DO ! iNRNK -2:-1
!write(*,*) 'NRNK loop completed'
END DO ! iSCALE 1:4
!write(*,*) 'SCALE loop completed'
END DO
!write(*,*) 'JOBREF loop completed'
END DO ! iJOBZ
!write(*,*) 'JOBZ loop completed'
END DO ! MODE -6:6
!write(*,*) 'MODE loop completed'
END DO ! 1 or 2 trajectories
!write(*,*) 'trajectories loop completed'
DEALLOCATE( ZA )
DEALLOCATE( ZAC )
DEALLOCATE( ZZ )
DEALLOCATE( ZF )
DEALLOCATE( ZF0 )
DEALLOCATE( ZF1 )
DEALLOCATE( ZX )
DEALLOCATE( ZX0 )
DEALLOCATE( ZY )
DEALLOCATE( ZY0 )
DEALLOCATE( ZY1 )
DEALLOCATE( ZAU )
DEALLOCATE( ZW )
DEALLOCATE( ZS )
DEALLOCATE( ZZ1 )
DEALLOCATE( RES )
DEALLOCATE( RES1 )
DEALLOCATE( RESEX )
DEALLOCATE( ZEIGS )
DEALLOCATE( SINGVX )
DEALLOCATE( SINGVQX )
END DO ! LLOOP
WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>'
WRITE(*,*) ' Test summary for ZGEDMD :'
WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>'
WRITE(*,*)
IF ( NFAIL_Z_XV == 0 ) THEN
WRITE(*,*) '>>>> Z - U*V test PASSED.'
ELSE
WRITE(*,*) 'Z - U*V test FAILED ', NFAIL_Z_XV, ' time(s)'
WRITE(*,*) 'Max error ||Z-U*V||_F was ', TMP_ZXW
NFAIL_TOTAL = NFAIL_TOTAL + NFAIL_Z_XV
END IF
IF ( NFAIL_AU == 0 ) THEN
WRITE(*,*) '>>>> A*U test PASSED. '
ELSE
WRITE(*,*) 'A*U test FAILED ', NFAIL_AU, ' time(s)'
WRITE(*,*) 'Max A*U test adjusted error measure was ', TMP_AU
WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS
NFAIL_TOTAL = NFAIL_TOTAL + NFAIL_AU
END IF
IF ( NFAIL_REZ == 0 ) THEN
WRITE(*,*) '>>>> Rezidual computation test PASSED.'
ELSE
WRITE(*,*) 'Rezidual computation test FAILED ', NFAIL_REZ, 'time(s)'
WRITE(*,*) 'Max residual computing test adjusted error measure was ', TMP_REZ
WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS
NFAIL_TOTAL = NFAIL_TOTAL + NFAIL_REZ
END IF
IF ( NFAIL_TOTAL == 0 ) THEN
WRITE(*,*) '>>>> ZGEDMD :: ALL TESTS PASSED.'
ELSE
WRITE(*,*) NFAIL_TOTAL, 'FAILURES!'
WRITE(*,*) '>>>>>>>>>>>>>> ZGEDMD :: TESTS FAILED. CHECK THE IMPLEMENTATION.'
END IF
IF ( TEST_QRDMD ) THEN
WRITE(*,*)
WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>'
WRITE(*,*) ' Test summary for ZGEDMDQ :'
WRITE(*,*) '>>>>>>>>>>>>>>>>>>>>>>>>>>'
WRITE(*,*)
IF ( NFAIL_SVDIFF == 0 ) THEN
WRITE(*,*) '>>>> ZGEDMD and ZGEDMDQ computed singular &
&values test PASSED.'
ELSE
WRITE(*,*) 'ZGEDMD and ZGEDMDQ discrepancies in &
&the singular values unacceptable ', &
NFAIL_SVDIFF, ' times. Test FAILED.'
WRITE(*,*) 'The maximal discrepancy in the singular values (relative to the norm) was ', SVDIFF
WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS
NFAILQ_TOTAL = NFAILQ_TOTAL + NFAIL_SVDIFF
END IF
IF ( NFAIL_F_QR == 0 ) THEN
WRITE(*,*) '>>>> F - Q*R test PASSED.'
ELSE
WRITE(*,*) 'F - Q*R test FAILED ', NFAIL_F_QR, ' time(s)'
WRITE(*,*) 'The largest relative residual was ', TMP_FQR
WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS
NFAILQ_TOTAL = NFAILQ_TOTAL + NFAIL_F_QR
END IF
IF ( NFAIL_REZQ == 0 ) THEN
WRITE(*,*) '>>>> Rezidual computation test PASSED.'
ELSE
WRITE(*,*) 'Rezidual computation test FAILED ', NFAIL_REZQ, 'time(s)'
WRITE(*,*) 'Max residual computing test adjusted error measure was ', TMP_REZQ
WRITE(*,*) 'It should be up to O(M*N) times EPS, EPS = ', EPS
NFAILQ_TOTAL = NFAILQ_TOTAL + NFAIL_REZQ
END IF
IF ( NFAILQ_TOTAL == 0 ) THEN
WRITE(*,*) '>>>>>>> ZGEDMDQ :: ALL TESTS PASSED.'
ELSE
WRITE(*,*) NFAILQ_TOTAL, 'FAILURES!'
WRITE(*,*) '>>>>>>> ZGEDMDQ :: TESTS FAILED. CHECK THE IMPLEMENTATION.'
END IF
END IF
WRITE(*,*)
WRITE(*,*) 'Test completed.'
STOP
END