You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
515 lines
15 KiB
515 lines
15 KiB
*> \brief \b ZGET38
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZGET38( RMAX, LMAX, NINFO, KNT, NIN )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER KNT, NIN
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER LMAX( 3 ), NINFO( 3 )
|
|
* DOUBLE PRECISION RMAX( 3 )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZGET38 tests ZTRSEN, a routine for estimating condition numbers of a
|
|
*> cluster of eigenvalues and/or its associated right invariant subspace
|
|
*>
|
|
*> The test matrices are read from a file with logical unit number NIN.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[out] RMAX
|
|
*> \verbatim
|
|
*> RMAX is DOUBLE PRECISION array, dimension (3)
|
|
*> Values of the largest test ratios.
|
|
*> RMAX(1) = largest residuals from ZHST01 or comparing
|
|
*> different calls to ZTRSEN
|
|
*> RMAX(2) = largest error in reciprocal condition
|
|
*> numbers taking their conditioning into account
|
|
*> RMAX(3) = largest error in reciprocal condition
|
|
*> numbers not taking their conditioning into
|
|
*> account (may be larger than RMAX(2))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] LMAX
|
|
*> \verbatim
|
|
*> LMAX is INTEGER array, dimension (3)
|
|
*> LMAX(i) is example number where largest test ratio
|
|
*> RMAX(i) is achieved. Also:
|
|
*> If ZGEHRD returns INFO nonzero on example i, LMAX(1)=i
|
|
*> If ZHSEQR returns INFO nonzero on example i, LMAX(2)=i
|
|
*> If ZTRSEN returns INFO nonzero on example i, LMAX(3)=i
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] NINFO
|
|
*> \verbatim
|
|
*> NINFO is INTEGER array, dimension (3)
|
|
*> NINFO(1) = No. of times ZGEHRD returned INFO nonzero
|
|
*> NINFO(2) = No. of times ZHSEQR returned INFO nonzero
|
|
*> NINFO(3) = No. of times ZTRSEN returned INFO nonzero
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] KNT
|
|
*> \verbatim
|
|
*> KNT is INTEGER
|
|
*> Total number of examples tested.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NIN
|
|
*> \verbatim
|
|
*> NIN is INTEGER
|
|
*> Input logical unit number.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZGET38( RMAX, LMAX, NINFO, KNT, NIN )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER KNT, NIN
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER LMAX( 3 ), NINFO( 3 )
|
|
DOUBLE PRECISION RMAX( 3 )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER LDT, LWORK
|
|
PARAMETER ( LDT = 20, LWORK = 2*LDT*( 10+LDT ) )
|
|
DOUBLE PRECISION ZERO, ONE, TWO
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
|
|
DOUBLE PRECISION EPSIN
|
|
PARAMETER ( EPSIN = 5.9605D-8 )
|
|
COMPLEX*16 CZERO
|
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, INFO, ISCL, ISRT, ITMP, J, KMIN, M, N, NDIM
|
|
DOUBLE PRECISION BIGNUM, EPS, S, SEP, SEPIN, SEPTMP, SIN,
|
|
$ SMLNUM, STMP, TNRM, TOL, TOLIN, V, VMAX, VMIN,
|
|
$ VMUL
|
|
* ..
|
|
* .. Local Arrays ..
|
|
LOGICAL SELECT( LDT )
|
|
INTEGER IPNT( LDT ), ISELEC( LDT )
|
|
DOUBLE PRECISION RESULT( 2 ), RWORK( LDT ), VAL( 3 ),
|
|
$ WSRT( LDT )
|
|
COMPLEX*16 Q( LDT, LDT ), QSAV( LDT, LDT ),
|
|
$ QTMP( LDT, LDT ), T( LDT, LDT ),
|
|
$ TMP( LDT, LDT ), TSAV( LDT, LDT ),
|
|
$ TSAV1( LDT, LDT ), TTMP( LDT, LDT ), W( LDT ),
|
|
$ WORK( LWORK ), WTMP( LDT )
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
|
EXTERNAL DLAMCH, ZLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZDSCAL, ZGEHRD, ZHSEQR, ZHST01, ZLACPY, ZTRSEN,
|
|
$ ZUNGHR
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, DIMAG, MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
EPS = DLAMCH( 'P' )
|
|
SMLNUM = DLAMCH( 'S' ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* EPSIN = 2**(-24) = precision to which input data computed
|
|
*
|
|
EPS = MAX( EPS, EPSIN )
|
|
RMAX( 1 ) = ZERO
|
|
RMAX( 2 ) = ZERO
|
|
RMAX( 3 ) = ZERO
|
|
LMAX( 1 ) = 0
|
|
LMAX( 2 ) = 0
|
|
LMAX( 3 ) = 0
|
|
KNT = 0
|
|
NINFO( 1 ) = 0
|
|
NINFO( 2 ) = 0
|
|
NINFO( 3 ) = 0
|
|
VAL( 1 ) = SQRT( SMLNUM )
|
|
VAL( 2 ) = ONE
|
|
VAL( 3 ) = SQRT( SQRT( BIGNUM ) )
|
|
*
|
|
* Read input data until N=0. Assume input eigenvalues are sorted
|
|
* lexicographically (increasing by real part, then decreasing by
|
|
* imaginary part)
|
|
*
|
|
10 CONTINUE
|
|
READ( NIN, FMT = * )N, NDIM, ISRT
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
READ( NIN, FMT = * )( ISELEC( I ), I = 1, NDIM )
|
|
DO 20 I = 1, N
|
|
READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
|
|
20 CONTINUE
|
|
READ( NIN, FMT = * )SIN, SEPIN
|
|
*
|
|
TNRM = ZLANGE( 'M', N, N, TMP, LDT, RWORK )
|
|
DO 200 ISCL = 1, 3
|
|
*
|
|
* Scale input matrix
|
|
*
|
|
KNT = KNT + 1
|
|
CALL ZLACPY( 'F', N, N, TMP, LDT, T, LDT )
|
|
VMUL = VAL( ISCL )
|
|
DO 30 I = 1, N
|
|
CALL ZDSCAL( N, VMUL, T( 1, I ), 1 )
|
|
30 CONTINUE
|
|
IF( TNRM.EQ.ZERO )
|
|
$ VMUL = ONE
|
|
CALL ZLACPY( 'F', N, N, T, LDT, TSAV, LDT )
|
|
*
|
|
* Compute Schur form
|
|
*
|
|
CALL ZGEHRD( N, 1, N, T, LDT, WORK( 1 ), WORK( N+1 ), LWORK-N,
|
|
$ INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
LMAX( 1 ) = KNT
|
|
NINFO( 1 ) = NINFO( 1 ) + 1
|
|
GO TO 200
|
|
END IF
|
|
*
|
|
* Generate unitary matrix
|
|
*
|
|
CALL ZLACPY( 'L', N, N, T, LDT, Q, LDT )
|
|
CALL ZUNGHR( N, 1, N, Q, LDT, WORK( 1 ), WORK( N+1 ), LWORK-N,
|
|
$ INFO )
|
|
*
|
|
* Compute Schur form
|
|
*
|
|
DO 50 J = 1, N - 2
|
|
DO 40 I = J + 2, N
|
|
T( I, J ) = CZERO
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
CALL ZHSEQR( 'S', 'V', N, 1, N, T, LDT, W, Q, LDT, WORK, LWORK,
|
|
$ INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
LMAX( 2 ) = KNT
|
|
NINFO( 2 ) = NINFO( 2 ) + 1
|
|
GO TO 200
|
|
END IF
|
|
*
|
|
* Sort, select eigenvalues
|
|
*
|
|
DO 60 I = 1, N
|
|
IPNT( I ) = I
|
|
SELECT( I ) = .FALSE.
|
|
60 CONTINUE
|
|
IF( ISRT.EQ.0 ) THEN
|
|
DO 70 I = 1, N
|
|
WSRT( I ) = DBLE( W( I ) )
|
|
70 CONTINUE
|
|
ELSE
|
|
DO 80 I = 1, N
|
|
WSRT( I ) = DIMAG( W( I ) )
|
|
80 CONTINUE
|
|
END IF
|
|
DO 100 I = 1, N - 1
|
|
KMIN = I
|
|
VMIN = WSRT( I )
|
|
DO 90 J = I + 1, N
|
|
IF( WSRT( J ).LT.VMIN ) THEN
|
|
KMIN = J
|
|
VMIN = WSRT( J )
|
|
END IF
|
|
90 CONTINUE
|
|
WSRT( KMIN ) = WSRT( I )
|
|
WSRT( I ) = VMIN
|
|
ITMP = IPNT( I )
|
|
IPNT( I ) = IPNT( KMIN )
|
|
IPNT( KMIN ) = ITMP
|
|
100 CONTINUE
|
|
DO 110 I = 1, NDIM
|
|
SELECT( IPNT( ISELEC( I ) ) ) = .TRUE.
|
|
110 CONTINUE
|
|
*
|
|
* Compute condition numbers
|
|
*
|
|
CALL ZLACPY( 'F', N, N, Q, LDT, QSAV, LDT )
|
|
CALL ZLACPY( 'F', N, N, T, LDT, TSAV1, LDT )
|
|
CALL ZTRSEN( 'B', 'V', SELECT, N, T, LDT, Q, LDT, WTMP, M, S,
|
|
$ SEP, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
LMAX( 3 ) = KNT
|
|
NINFO( 3 ) = NINFO( 3 ) + 1
|
|
GO TO 200
|
|
END IF
|
|
SEPTMP = SEP / VMUL
|
|
STMP = S
|
|
*
|
|
* Compute residuals
|
|
*
|
|
CALL ZHST01( N, 1, N, TSAV, LDT, T, LDT, Q, LDT, WORK, LWORK,
|
|
$ RWORK, RESULT )
|
|
VMAX = MAX( RESULT( 1 ), RESULT( 2 ) )
|
|
IF( VMAX.GT.RMAX( 1 ) ) THEN
|
|
RMAX( 1 ) = VMAX
|
|
IF( NINFO( 1 ).EQ.0 )
|
|
$ LMAX( 1 ) = KNT
|
|
END IF
|
|
*
|
|
* Compare condition number for eigenvalue cluster
|
|
* taking its condition number into account
|
|
*
|
|
V = MAX( TWO*DBLE( N )*EPS*TNRM, SMLNUM )
|
|
IF( TNRM.EQ.ZERO )
|
|
$ V = ONE
|
|
IF( V.GT.SEPTMP ) THEN
|
|
TOL = ONE
|
|
ELSE
|
|
TOL = V / SEPTMP
|
|
END IF
|
|
IF( V.GT.SEPIN ) THEN
|
|
TOLIN = ONE
|
|
ELSE
|
|
TOLIN = V / SEPIN
|
|
END IF
|
|
TOL = MAX( TOL, SMLNUM / EPS )
|
|
TOLIN = MAX( TOLIN, SMLNUM / EPS )
|
|
IF( EPS*( SIN-TOLIN ).GT.STMP+TOL ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SIN-TOLIN.GT.STMP+TOL ) THEN
|
|
VMAX = ( SIN-TOLIN ) / ( STMP+TOL )
|
|
ELSE IF( SIN+TOLIN.LT.EPS*( STMP-TOL ) ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SIN+TOLIN.LT.STMP-TOL ) THEN
|
|
VMAX = ( STMP-TOL ) / ( SIN+TOLIN )
|
|
ELSE
|
|
VMAX = ONE
|
|
END IF
|
|
IF( VMAX.GT.RMAX( 2 ) ) THEN
|
|
RMAX( 2 ) = VMAX
|
|
IF( NINFO( 2 ).EQ.0 )
|
|
$ LMAX( 2 ) = KNT
|
|
END IF
|
|
*
|
|
* Compare condition numbers for invariant subspace
|
|
* taking its condition number into account
|
|
*
|
|
IF( V.GT.SEPTMP*STMP ) THEN
|
|
TOL = SEPTMP
|
|
ELSE
|
|
TOL = V / STMP
|
|
END IF
|
|
IF( V.GT.SEPIN*SIN ) THEN
|
|
TOLIN = SEPIN
|
|
ELSE
|
|
TOLIN = V / SIN
|
|
END IF
|
|
TOL = MAX( TOL, SMLNUM / EPS )
|
|
TOLIN = MAX( TOLIN, SMLNUM / EPS )
|
|
IF( EPS*( SEPIN-TOLIN ).GT.SEPTMP+TOL ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SEPIN-TOLIN.GT.SEPTMP+TOL ) THEN
|
|
VMAX = ( SEPIN-TOLIN ) / ( SEPTMP+TOL )
|
|
ELSE IF( SEPIN+TOLIN.LT.EPS*( SEPTMP-TOL ) ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SEPIN+TOLIN.LT.SEPTMP-TOL ) THEN
|
|
VMAX = ( SEPTMP-TOL ) / ( SEPIN+TOLIN )
|
|
ELSE
|
|
VMAX = ONE
|
|
END IF
|
|
IF( VMAX.GT.RMAX( 2 ) ) THEN
|
|
RMAX( 2 ) = VMAX
|
|
IF( NINFO( 2 ).EQ.0 )
|
|
$ LMAX( 2 ) = KNT
|
|
END IF
|
|
*
|
|
* Compare condition number for eigenvalue cluster
|
|
* without taking its condition number into account
|
|
*
|
|
IF( SIN.LE.DBLE( 2*N )*EPS .AND. STMP.LE.DBLE( 2*N )*EPS ) THEN
|
|
VMAX = ONE
|
|
ELSE IF( EPS*SIN.GT.STMP ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SIN.GT.STMP ) THEN
|
|
VMAX = SIN / STMP
|
|
ELSE IF( SIN.LT.EPS*STMP ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SIN.LT.STMP ) THEN
|
|
VMAX = STMP / SIN
|
|
ELSE
|
|
VMAX = ONE
|
|
END IF
|
|
IF( VMAX.GT.RMAX( 3 ) ) THEN
|
|
RMAX( 3 ) = VMAX
|
|
IF( NINFO( 3 ).EQ.0 )
|
|
$ LMAX( 3 ) = KNT
|
|
END IF
|
|
*
|
|
* Compare condition numbers for invariant subspace
|
|
* without taking its condition number into account
|
|
*
|
|
IF( SEPIN.LE.V .AND. SEPTMP.LE.V ) THEN
|
|
VMAX = ONE
|
|
ELSE IF( EPS*SEPIN.GT.SEPTMP ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SEPIN.GT.SEPTMP ) THEN
|
|
VMAX = SEPIN / SEPTMP
|
|
ELSE IF( SEPIN.LT.EPS*SEPTMP ) THEN
|
|
VMAX = ONE / EPS
|
|
ELSE IF( SEPIN.LT.SEPTMP ) THEN
|
|
VMAX = SEPTMP / SEPIN
|
|
ELSE
|
|
VMAX = ONE
|
|
END IF
|
|
IF( VMAX.GT.RMAX( 3 ) ) THEN
|
|
RMAX( 3 ) = VMAX
|
|
IF( NINFO( 3 ).EQ.0 )
|
|
$ LMAX( 3 ) = KNT
|
|
END IF
|
|
*
|
|
* Compute eigenvalue condition number only and compare
|
|
* Update Q
|
|
*
|
|
VMAX = ZERO
|
|
CALL ZLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
|
|
CALL ZLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
|
|
SEPTMP = -ONE
|
|
STMP = -ONE
|
|
CALL ZTRSEN( 'E', 'V', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
|
|
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
LMAX( 3 ) = KNT
|
|
NINFO( 3 ) = NINFO( 3 ) + 1
|
|
GO TO 200
|
|
END IF
|
|
IF( S.NE.STMP )
|
|
$ VMAX = ONE / EPS
|
|
IF( -ONE.NE.SEPTMP )
|
|
$ VMAX = ONE / EPS
|
|
DO 130 I = 1, N
|
|
DO 120 J = 1, N
|
|
IF( TTMP( I, J ).NE.T( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
IF( QTMP( I, J ).NE.Q( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
*
|
|
* Compute invariant subspace condition number only and compare
|
|
* Update Q
|
|
*
|
|
CALL ZLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
|
|
CALL ZLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
|
|
SEPTMP = -ONE
|
|
STMP = -ONE
|
|
CALL ZTRSEN( 'V', 'V', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
|
|
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
LMAX( 3 ) = KNT
|
|
NINFO( 3 ) = NINFO( 3 ) + 1
|
|
GO TO 200
|
|
END IF
|
|
IF( -ONE.NE.STMP )
|
|
$ VMAX = ONE / EPS
|
|
IF( SEP.NE.SEPTMP )
|
|
$ VMAX = ONE / EPS
|
|
DO 150 I = 1, N
|
|
DO 140 J = 1, N
|
|
IF( TTMP( I, J ).NE.T( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
IF( QTMP( I, J ).NE.Q( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
*
|
|
* Compute eigenvalue condition number only and compare
|
|
* Do not update Q
|
|
*
|
|
CALL ZLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
|
|
CALL ZLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
|
|
SEPTMP = -ONE
|
|
STMP = -ONE
|
|
CALL ZTRSEN( 'E', 'N', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
|
|
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
LMAX( 3 ) = KNT
|
|
NINFO( 3 ) = NINFO( 3 ) + 1
|
|
GO TO 200
|
|
END IF
|
|
IF( S.NE.STMP )
|
|
$ VMAX = ONE / EPS
|
|
IF( -ONE.NE.SEPTMP )
|
|
$ VMAX = ONE / EPS
|
|
DO 170 I = 1, N
|
|
DO 160 J = 1, N
|
|
IF( TTMP( I, J ).NE.T( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
IF( QTMP( I, J ).NE.QSAV( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
160 CONTINUE
|
|
170 CONTINUE
|
|
*
|
|
* Compute invariant subspace condition number only and compare
|
|
* Do not update Q
|
|
*
|
|
CALL ZLACPY( 'F', N, N, TSAV1, LDT, TTMP, LDT )
|
|
CALL ZLACPY( 'F', N, N, QSAV, LDT, QTMP, LDT )
|
|
SEPTMP = -ONE
|
|
STMP = -ONE
|
|
CALL ZTRSEN( 'V', 'N', SELECT, N, TTMP, LDT, QTMP, LDT, WTMP,
|
|
$ M, STMP, SEPTMP, WORK, LWORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
LMAX( 3 ) = KNT
|
|
NINFO( 3 ) = NINFO( 3 ) + 1
|
|
GO TO 200
|
|
END IF
|
|
IF( -ONE.NE.STMP )
|
|
$ VMAX = ONE / EPS
|
|
IF( SEP.NE.SEPTMP )
|
|
$ VMAX = ONE / EPS
|
|
DO 190 I = 1, N
|
|
DO 180 J = 1, N
|
|
IF( TTMP( I, J ).NE.T( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
IF( QTMP( I, J ).NE.QSAV( I, J ) )
|
|
$ VMAX = ONE / EPS
|
|
180 CONTINUE
|
|
190 CONTINUE
|
|
IF( VMAX.GT.RMAX( 1 ) ) THEN
|
|
RMAX( 1 ) = VMAX
|
|
IF( NINFO( 1 ).EQ.0 )
|
|
$ LMAX( 1 ) = KNT
|
|
END IF
|
|
200 CONTINUE
|
|
GO TO 10
|
|
*
|
|
* End of ZGET38
|
|
*
|
|
END
|
|
|