You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
427 lines
13 KiB
427 lines
13 KiB
*> \brief \b ZHET21
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
|
|
* LDV, TAU, WORK, RWORK, RESULT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
|
|
* COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
|
|
* $ V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZHET21 generally checks a decomposition of the form
|
|
*>
|
|
*> A = U S U**H
|
|
*>
|
|
*> where **H means conjugate transpose, A is hermitian, U is unitary, and
|
|
*> S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if
|
|
*> KBAND=1).
|
|
*>
|
|
*> If ITYPE=1, then U is represented as a dense matrix; otherwise U is
|
|
*> expressed as a product of Householder transformations, whose vectors
|
|
*> are stored in the array "V" and whose scaling constants are in "TAU".
|
|
*> We shall use the letter "V" to refer to the product of Householder
|
|
*> transformations (which should be equal to U).
|
|
*>
|
|
*> Specifically, if ITYPE=1, then:
|
|
*>
|
|
*> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
|
|
*> RESULT(2) = | I - U U**H | / ( n ulp )
|
|
*>
|
|
*> If ITYPE=2, then:
|
|
*>
|
|
*> RESULT(1) = | A - V S V**H | / ( |A| n ulp )
|
|
*>
|
|
*> If ITYPE=3, then:
|
|
*>
|
|
*> RESULT(1) = | I - U V**H | / ( n ulp )
|
|
*>
|
|
*> For ITYPE > 1, the transformation U is expressed as a product
|
|
*> V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)**H and each
|
|
*> vector v(j) has its first j elements 0 and the remaining n-j elements
|
|
*> stored in V(j+1:n,j).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ITYPE
|
|
*> \verbatim
|
|
*> ITYPE is INTEGER
|
|
*> Specifies the type of tests to be performed.
|
|
*> 1: U expressed as a dense unitary matrix:
|
|
*> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and
|
|
*> RESULT(2) = | I - U U**H | / ( n ulp )
|
|
*>
|
|
*> 2: U expressed as a product V of Housholder transformations:
|
|
*> RESULT(1) = | A - V S V**H | / ( |A| n ulp )
|
|
*>
|
|
*> 3: U expressed both as a dense unitary matrix and
|
|
*> as a product of Housholder transformations:
|
|
*> RESULT(1) = | I - U V**H | / ( n ulp )
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER
|
|
*> If UPLO='U', the upper triangle of A and V will be used and
|
|
*> the (strictly) lower triangle will not be referenced.
|
|
*> If UPLO='L', the lower triangle of A and V will be used and
|
|
*> the (strictly) upper triangle will not be referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The size of the matrix. If it is zero, ZHET21 does nothing.
|
|
*> It must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KBAND
|
|
*> \verbatim
|
|
*> KBAND is INTEGER
|
|
*> The bandwidth of the matrix. It may only be zero or one.
|
|
*> If zero, then S is diagonal, and E is not referenced. If
|
|
*> one, then S is symmetric tri-diagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA, N)
|
|
*> The original (unfactored) matrix. It is assumed to be
|
|
*> hermitian, and only the upper (UPLO='U') or only the lower
|
|
*> (UPLO='L') will be referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A. It must be at least 1
|
|
*> and at least N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The diagonal of the (symmetric tri-) diagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The off-diagonal of the (symmetric tri-) diagonal matrix.
|
|
*> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
|
|
*> (3,2) element, etc.
|
|
*> Not referenced if KBAND=0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] U
|
|
*> \verbatim
|
|
*> U is COMPLEX*16 array, dimension (LDU, N)
|
|
*> If ITYPE=1 or 3, this contains the unitary matrix in
|
|
*> the decomposition, expressed as a dense matrix. If ITYPE=2,
|
|
*> then it is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of U. LDU must be at least N and
|
|
*> at least 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] V
|
|
*> \verbatim
|
|
*> V is COMPLEX*16 array, dimension (LDV, N)
|
|
*> If ITYPE=2 or 3, the columns of this array contain the
|
|
*> Householder vectors used to describe the unitary matrix
|
|
*> in the decomposition. If UPLO='L', then the vectors are in
|
|
*> the lower triangle, if UPLO='U', then in the upper
|
|
*> triangle.
|
|
*> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
|
|
*> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
|
|
*> is set to one, and later reset to its original value, during
|
|
*> the course of the calculation.
|
|
*> If ITYPE=1, then it is neither referenced nor modified.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of V. LDV must be at least N and
|
|
*> at least 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX*16 array, dimension (N)
|
|
*> If ITYPE >= 2, then TAU(j) is the scalar factor of
|
|
*> v(j) v(j)**H in the Householder transformation H(j) of
|
|
*> the product U = H(1)...H(n-2)
|
|
*> If ITYPE < 2, then TAU is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (2*N**2)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is DOUBLE PRECISION array, dimension (2)
|
|
*> The values computed by the two tests described above. The
|
|
*> values are currently limited to 1/ulp, to avoid overflow.
|
|
*> RESULT(1) is always modified. RESULT(2) is modified only
|
|
*> if ITYPE=1.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
|
|
$ LDV, TAU, WORK, RWORK, RESULT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * )
|
|
COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
|
|
$ V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TEN
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
|
|
COMPLEX*16 CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LOWER
|
|
CHARACTER CUPLO
|
|
INTEGER IINFO, J, JCOL, JR, JROW
|
|
DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
|
|
COMPLEX*16 VSAVE
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
|
|
EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZGEMM, ZHER, ZHER2, ZLACPY, ZLARFY, ZLASET,
|
|
$ ZUNM2L, ZUNM2R
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, DCMPLX, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
RESULT( 1 ) = ZERO
|
|
IF( ITYPE.EQ.1 )
|
|
$ RESULT( 2 ) = ZERO
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
LOWER = .FALSE.
|
|
CUPLO = 'U'
|
|
ELSE
|
|
LOWER = .TRUE.
|
|
CUPLO = 'L'
|
|
END IF
|
|
*
|
|
UNFL = DLAMCH( 'Safe minimum' )
|
|
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
|
|
*
|
|
* Some Error Checks
|
|
*
|
|
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
|
|
RESULT( 1 ) = TEN / ULP
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Do Test 1
|
|
*
|
|
* Norm of A:
|
|
*
|
|
IF( ITYPE.EQ.3 ) THEN
|
|
ANORM = ONE
|
|
ELSE
|
|
ANORM = MAX( ZLANHE( '1', CUPLO, N, A, LDA, RWORK ), UNFL )
|
|
END IF
|
|
*
|
|
* Compute error matrix:
|
|
*
|
|
IF( ITYPE.EQ.1 ) THEN
|
|
*
|
|
* ITYPE=1: error = A - U S U**H
|
|
*
|
|
CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
|
|
CALL ZLACPY( CUPLO, N, N, A, LDA, WORK, N )
|
|
*
|
|
DO 10 J = 1, N
|
|
CALL ZHER( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N )
|
|
10 CONTINUE
|
|
*
|
|
IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
|
|
DO 20 J = 1, N - 1
|
|
CALL ZHER2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1,
|
|
$ U( 1, J+1 ), 1, WORK, N )
|
|
20 CONTINUE
|
|
END IF
|
|
WNORM = ZLANHE( '1', CUPLO, N, WORK, N, RWORK )
|
|
*
|
|
ELSE IF( ITYPE.EQ.2 ) THEN
|
|
*
|
|
* ITYPE=2: error = V S V**H - A
|
|
*
|
|
CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
|
|
*
|
|
IF( LOWER ) THEN
|
|
WORK( N**2 ) = D( N )
|
|
DO 40 J = N - 1, 1, -1
|
|
IF( KBAND.EQ.1 ) THEN
|
|
WORK( ( N+1 )*( J-1 )+2 ) = ( CONE-TAU( J ) )*E( J )
|
|
DO 30 JR = J + 2, N
|
|
WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J )
|
|
30 CONTINUE
|
|
END IF
|
|
*
|
|
VSAVE = V( J+1, J )
|
|
V( J+1, J ) = ONE
|
|
CALL ZLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ),
|
|
$ WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) )
|
|
V( J+1, J ) = VSAVE
|
|
WORK( ( N+1 )*( J-1 )+1 ) = D( J )
|
|
40 CONTINUE
|
|
ELSE
|
|
WORK( 1 ) = D( 1 )
|
|
DO 60 J = 1, N - 1
|
|
IF( KBAND.EQ.1 ) THEN
|
|
WORK( ( N+1 )*J ) = ( CONE-TAU( J ) )*E( J )
|
|
DO 50 JR = 1, J - 1
|
|
WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 )
|
|
50 CONTINUE
|
|
END IF
|
|
*
|
|
VSAVE = V( J, J+1 )
|
|
V( J, J+1 ) = ONE
|
|
CALL ZLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N,
|
|
$ WORK( N**2+1 ) )
|
|
V( J, J+1 ) = VSAVE
|
|
WORK( ( N+1 )*J+1 ) = D( J+1 )
|
|
60 CONTINUE
|
|
END IF
|
|
*
|
|
DO 90 JCOL = 1, N
|
|
IF( LOWER ) THEN
|
|
DO 70 JROW = JCOL, N
|
|
WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
|
|
$ - A( JROW, JCOL )
|
|
70 CONTINUE
|
|
ELSE
|
|
DO 80 JROW = 1, JCOL
|
|
WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
|
|
$ - A( JROW, JCOL )
|
|
80 CONTINUE
|
|
END IF
|
|
90 CONTINUE
|
|
WNORM = ZLANHE( '1', CUPLO, N, WORK, N, RWORK )
|
|
*
|
|
ELSE IF( ITYPE.EQ.3 ) THEN
|
|
*
|
|
* ITYPE=3: error = U V**H - I
|
|
*
|
|
IF( N.LT.2 )
|
|
$ RETURN
|
|
CALL ZLACPY( ' ', N, N, U, LDU, WORK, N )
|
|
IF( LOWER ) THEN
|
|
CALL ZUNM2R( 'R', 'C', N, N-1, N-1, V( 2, 1 ), LDV, TAU,
|
|
$ WORK( N+1 ), N, WORK( N**2+1 ), IINFO )
|
|
ELSE
|
|
CALL ZUNM2L( 'R', 'C', N, N-1, N-1, V( 1, 2 ), LDV, TAU,
|
|
$ WORK, N, WORK( N**2+1 ), IINFO )
|
|
END IF
|
|
IF( IINFO.NE.0 ) THEN
|
|
RESULT( 1 ) = TEN / ULP
|
|
RETURN
|
|
END IF
|
|
*
|
|
DO 100 J = 1, N
|
|
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
|
|
100 CONTINUE
|
|
*
|
|
WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
|
|
END IF
|
|
*
|
|
IF( ANORM.GT.WNORM ) THEN
|
|
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
|
|
ELSE
|
|
IF( ANORM.LT.ONE ) THEN
|
|
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
|
|
ELSE
|
|
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do Test 2
|
|
*
|
|
* Compute U U**H - I
|
|
*
|
|
IF( ITYPE.EQ.1 ) THEN
|
|
CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
|
|
$ WORK, N )
|
|
*
|
|
DO 110 J = 1, N
|
|
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
|
|
110 CONTINUE
|
|
*
|
|
RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
|
|
$ DBLE( N ) ) / ( N*ULP )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZHET21
|
|
*
|
|
END
|
|
|