Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

401 lines
11 KiB

*> \brief \b ZLATM4
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND,
* TRIANG, IDIST, ISEED, A, LDA )
*
* .. Scalar Arguments ..
* LOGICAL RSIGN
* INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2
* DOUBLE PRECISION AMAGN, RCOND, TRIANG
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLATM4 generates basic square matrices, which may later be
*> multiplied by others in order to produce test matrices. It is
*> intended mainly to be used to test the generalized eigenvalue
*> routines.
*>
*> It first generates the diagonal and (possibly) subdiagonal,
*> according to the value of ITYPE, NZ1, NZ2, RSIGN, AMAGN, and RCOND.
*> It then fills in the upper triangle with random numbers, if TRIANG is
*> non-zero.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> The "type" of matrix on the diagonal and sub-diagonal.
*> If ITYPE < 0, then type abs(ITYPE) is generated and then
*> swapped end for end (A(I,J) := A'(N-J,N-I).) See also
*> the description of AMAGN and RSIGN.
*>
*> Special types:
*> = 0: the zero matrix.
*> = 1: the identity.
*> = 2: a transposed Jordan block.
*> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block
*> followed by a k x k identity block, where k=(N-1)/2.
*> If N is even, then k=(N-2)/2, and a zero diagonal entry
*> is tacked onto the end.
*>
*> Diagonal types. The diagonal consists of NZ1 zeros, then
*> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE
*> specifies the nonzero diagonal entries as follows:
*> = 4: 1, ..., k
*> = 5: 1, RCOND, ..., RCOND
*> = 6: 1, ..., 1, RCOND
*> = 7: 1, a, a^2, ..., a^(k-1)=RCOND
*> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
*> = 9: random numbers chosen from (RCOND,1)
*> = 10: random numbers with distribution IDIST (see ZLARND.)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix.
*> \endverbatim
*>
*> \param[in] NZ1
*> \verbatim
*> NZ1 is INTEGER
*> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
*> be zero.
*> \endverbatim
*>
*> \param[in] NZ2
*> \verbatim
*> NZ2 is INTEGER
*> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
*> be zero.
*> \endverbatim
*>
*> \param[in] RSIGN
*> \verbatim
*> RSIGN is LOGICAL
*> = .TRUE.: The diagonal and subdiagonal entries will be
*> multiplied by random numbers of magnitude 1.
*> = .FALSE.: The diagonal and subdiagonal entries will be
*> left as they are (usually non-negative real.)
*> \endverbatim
*>
*> \param[in] AMAGN
*> \verbatim
*> AMAGN is DOUBLE PRECISION
*> The diagonal and subdiagonal entries will be multiplied by
*> AMAGN.
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> If abs(ITYPE) > 4, then the smallest diagonal entry will be
*> RCOND. RCOND must be between 0 and 1.
*> \endverbatim
*>
*> \param[in] TRIANG
*> \verbatim
*> TRIANG is DOUBLE PRECISION
*> The entries above the diagonal will be random numbers with
*> magnitude bounded by TRIANG (i.e., random numbers multiplied
*> by TRIANG.)
*> \endverbatim
*>
*> \param[in] IDIST
*> \verbatim
*> IDIST is INTEGER
*> On entry, DIST specifies the type of distribution to be used
*> to generate a random matrix .
*> = 1: real and imaginary parts each UNIFORM( 0, 1 )
*> = 2: real and imaginary parts each UNIFORM( -1, 1 )
*> = 3: real and imaginary parts each NORMAL( 0, 1 )
*> = 4: complex number uniform in DISK( 0, 1 )
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The values of ISEED are changed on exit, and can
*> be used in the next call to ZLATM4 to continue the same
*> random number sequence.
*> Note: ISEED(4) should be odd, for the random number generator
*> used at present.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA, N)
*> Array to be computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> Leading dimension of A. Must be at least 1 and at least N.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND,
$ TRIANG, IDIST, ISEED, A, LDA )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL RSIGN
INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2
DOUBLE PRECISION AMAGN, RCOND, TRIANG
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND, KLEN
DOUBLE PRECISION ALPHA
COMPLEX*16 CTEMP
* ..
* .. External Functions ..
DOUBLE PRECISION DLARAN
COMPLEX*16 ZLARND
EXTERNAL DLARAN, ZLARND
* ..
* .. External Subroutines ..
EXTERNAL ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, EXP, LOG, MAX, MIN, MOD
* ..
* .. Executable Statements ..
*
IF( N.LE.0 )
$ RETURN
CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
*
* Insure a correct ISEED
*
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
$ ISEED( 4 ) = ISEED( 4 ) + 1
*
* Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
* and RCOND
*
IF( ITYPE.NE.0 ) THEN
IF( ABS( ITYPE ).GE.4 ) THEN
KBEG = MAX( 1, MIN( N, NZ1+1 ) )
KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
KLEN = KEND + 1 - KBEG
ELSE
KBEG = 1
KEND = N
KLEN = N
END IF
ISDB = 1
ISDE = 0
GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
$ 180, 200 )ABS( ITYPE )
*
* abs(ITYPE) = 1: Identity
*
10 CONTINUE
DO 20 JD = 1, N
A( JD, JD ) = CONE
20 CONTINUE
GO TO 220
*
* abs(ITYPE) = 2: Transposed Jordan block
*
30 CONTINUE
DO 40 JD = 1, N - 1
A( JD+1, JD ) = CONE
40 CONTINUE
ISDB = 1
ISDE = N - 1
GO TO 220
*
* abs(ITYPE) = 3: Transposed Jordan block, followed by the
* identity.
*
50 CONTINUE
K = ( N-1 ) / 2
DO 60 JD = 1, K
A( JD+1, JD ) = CONE
60 CONTINUE
ISDB = 1
ISDE = K
DO 70 JD = K + 2, 2*K + 1
A( JD, JD ) = CONE
70 CONTINUE
GO TO 220
*
* abs(ITYPE) = 4: 1,...,k
*
80 CONTINUE
DO 90 JD = KBEG, KEND
A( JD, JD ) = DCMPLX( JD-NZ1 )
90 CONTINUE
GO TO 220
*
* abs(ITYPE) = 5: One large D value:
*
100 CONTINUE
DO 110 JD = KBEG + 1, KEND
A( JD, JD ) = DCMPLX( RCOND )
110 CONTINUE
A( KBEG, KBEG ) = CONE
GO TO 220
*
* abs(ITYPE) = 6: One small D value:
*
120 CONTINUE
DO 130 JD = KBEG, KEND - 1
A( JD, JD ) = CONE
130 CONTINUE
A( KEND, KEND ) = DCMPLX( RCOND )
GO TO 220
*
* abs(ITYPE) = 7: Exponentially distributed D values:
*
140 CONTINUE
A( KBEG, KBEG ) = CONE
IF( KLEN.GT.1 ) THEN
ALPHA = RCOND**( ONE / DBLE( KLEN-1 ) )
DO 150 I = 2, KLEN
A( NZ1+I, NZ1+I ) = DCMPLX( ALPHA**DBLE( I-1 ) )
150 CONTINUE
END IF
GO TO 220
*
* abs(ITYPE) = 8: Arithmetically distributed D values:
*
160 CONTINUE
A( KBEG, KBEG ) = CONE
IF( KLEN.GT.1 ) THEN
ALPHA = ( ONE-RCOND ) / DBLE( KLEN-1 )
DO 170 I = 2, KLEN
A( NZ1+I, NZ1+I ) = DCMPLX( DBLE( KLEN-I )*ALPHA+RCOND )
170 CONTINUE
END IF
GO TO 220
*
* abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
*
180 CONTINUE
ALPHA = LOG( RCOND )
DO 190 JD = KBEG, KEND
A( JD, JD ) = EXP( ALPHA*DLARAN( ISEED ) )
190 CONTINUE
GO TO 220
*
* abs(ITYPE) = 10: Randomly distributed D values from DIST
*
200 CONTINUE
DO 210 JD = KBEG, KEND
A( JD, JD ) = ZLARND( IDIST, ISEED )
210 CONTINUE
*
220 CONTINUE
*
* Scale by AMAGN
*
DO 230 JD = KBEG, KEND
A( JD, JD ) = AMAGN*DBLE( A( JD, JD ) )
230 CONTINUE
DO 240 JD = ISDB, ISDE
A( JD+1, JD ) = AMAGN*DBLE( A( JD+1, JD ) )
240 CONTINUE
*
* If RSIGN = .TRUE., assign random signs to diagonal and
* subdiagonal
*
IF( RSIGN ) THEN
DO 250 JD = KBEG, KEND
IF( DBLE( A( JD, JD ) ).NE.ZERO ) THEN
CTEMP = ZLARND( 3, ISEED )
CTEMP = CTEMP / ABS( CTEMP )
A( JD, JD ) = CTEMP*DBLE( A( JD, JD ) )
END IF
250 CONTINUE
DO 260 JD = ISDB, ISDE
IF( DBLE( A( JD+1, JD ) ).NE.ZERO ) THEN
CTEMP = ZLARND( 3, ISEED )
CTEMP = CTEMP / ABS( CTEMP )
A( JD+1, JD ) = CTEMP*DBLE( A( JD+1, JD ) )
END IF
260 CONTINUE
END IF
*
* Reverse if ITYPE < 0
*
IF( ITYPE.LT.0 ) THEN
DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
CTEMP = A( JD, JD )
A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
A( KBEG+KEND-JD, KBEG+KEND-JD ) = CTEMP
270 CONTINUE
DO 280 JD = 1, ( N-1 ) / 2
CTEMP = A( JD+1, JD )
A( JD+1, JD ) = A( N+1-JD, N-JD )
A( N+1-JD, N-JD ) = CTEMP
280 CONTINUE
END IF
*
END IF
*
* Fill in upper triangle
*
IF( TRIANG.NE.ZERO ) THEN
DO 300 JC = 2, N
DO 290 JR = 1, JC - 1
A( JR, JC ) = TRIANG*ZLARND( IDIST, ISEED )
290 CONTINUE
300 CONTINUE
END IF
*
RETURN
*
* End of ZLATM4
*
END