You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
401 lines
11 KiB
401 lines
11 KiB
*> \brief \b ZLATM4
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND,
|
|
* TRIANG, IDIST, ISEED, A, LDA )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL RSIGN
|
|
* INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2
|
|
* DOUBLE PRECISION AMAGN, RCOND, TRIANG
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER ISEED( 4 )
|
|
* COMPLEX*16 A( LDA, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZLATM4 generates basic square matrices, which may later be
|
|
*> multiplied by others in order to produce test matrices. It is
|
|
*> intended mainly to be used to test the generalized eigenvalue
|
|
*> routines.
|
|
*>
|
|
*> It first generates the diagonal and (possibly) subdiagonal,
|
|
*> according to the value of ITYPE, NZ1, NZ2, RSIGN, AMAGN, and RCOND.
|
|
*> It then fills in the upper triangle with random numbers, if TRIANG is
|
|
*> non-zero.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ITYPE
|
|
*> \verbatim
|
|
*> ITYPE is INTEGER
|
|
*> The "type" of matrix on the diagonal and sub-diagonal.
|
|
*> If ITYPE < 0, then type abs(ITYPE) is generated and then
|
|
*> swapped end for end (A(I,J) := A'(N-J,N-I).) See also
|
|
*> the description of AMAGN and RSIGN.
|
|
*>
|
|
*> Special types:
|
|
*> = 0: the zero matrix.
|
|
*> = 1: the identity.
|
|
*> = 2: a transposed Jordan block.
|
|
*> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block
|
|
*> followed by a k x k identity block, where k=(N-1)/2.
|
|
*> If N is even, then k=(N-2)/2, and a zero diagonal entry
|
|
*> is tacked onto the end.
|
|
*>
|
|
*> Diagonal types. The diagonal consists of NZ1 zeros, then
|
|
*> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE
|
|
*> specifies the nonzero diagonal entries as follows:
|
|
*> = 4: 1, ..., k
|
|
*> = 5: 1, RCOND, ..., RCOND
|
|
*> = 6: 1, ..., 1, RCOND
|
|
*> = 7: 1, a, a^2, ..., a^(k-1)=RCOND
|
|
*> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
|
|
*> = 9: random numbers chosen from (RCOND,1)
|
|
*> = 10: random numbers with distribution IDIST (see ZLARND.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NZ1
|
|
*> \verbatim
|
|
*> NZ1 is INTEGER
|
|
*> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
|
|
*> be zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NZ2
|
|
*> \verbatim
|
|
*> NZ2 is INTEGER
|
|
*> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
|
|
*> be zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RSIGN
|
|
*> \verbatim
|
|
*> RSIGN is LOGICAL
|
|
*> = .TRUE.: The diagonal and subdiagonal entries will be
|
|
*> multiplied by random numbers of magnitude 1.
|
|
*> = .FALSE.: The diagonal and subdiagonal entries will be
|
|
*> left as they are (usually non-negative real.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AMAGN
|
|
*> \verbatim
|
|
*> AMAGN is DOUBLE PRECISION
|
|
*> The diagonal and subdiagonal entries will be multiplied by
|
|
*> AMAGN.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RCOND
|
|
*> \verbatim
|
|
*> RCOND is DOUBLE PRECISION
|
|
*> If abs(ITYPE) > 4, then the smallest diagonal entry will be
|
|
*> RCOND. RCOND must be between 0 and 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRIANG
|
|
*> \verbatim
|
|
*> TRIANG is DOUBLE PRECISION
|
|
*> The entries above the diagonal will be random numbers with
|
|
*> magnitude bounded by TRIANG (i.e., random numbers multiplied
|
|
*> by TRIANG.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IDIST
|
|
*> \verbatim
|
|
*> IDIST is INTEGER
|
|
*> On entry, DIST specifies the type of distribution to be used
|
|
*> to generate a random matrix .
|
|
*> = 1: real and imaginary parts each UNIFORM( 0, 1 )
|
|
*> = 2: real and imaginary parts each UNIFORM( -1, 1 )
|
|
*> = 3: real and imaginary parts each NORMAL( 0, 1 )
|
|
*> = 4: complex number uniform in DISK( 0, 1 )
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ISEED
|
|
*> \verbatim
|
|
*> ISEED is INTEGER array, dimension (4)
|
|
*> On entry ISEED specifies the seed of the random number
|
|
*> generator. The values of ISEED are changed on exit, and can
|
|
*> be used in the next call to ZLATM4 to continue the same
|
|
*> random number sequence.
|
|
*> Note: ISEED(4) should be odd, for the random number generator
|
|
*> used at present.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA, N)
|
|
*> Array to be computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> Leading dimension of A. Must be at least 1 and at least N.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND,
|
|
$ TRIANG, IDIST, ISEED, A, LDA )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL RSIGN
|
|
INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2
|
|
DOUBLE PRECISION AMAGN, RCOND, TRIANG
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER ISEED( 4 )
|
|
COMPLEX*16 A( LDA, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
COMPLEX*16 CZERO, CONE
|
|
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
|
|
$ CONE = ( 1.0D+0, 0.0D+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND, KLEN
|
|
DOUBLE PRECISION ALPHA
|
|
COMPLEX*16 CTEMP
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLARAN
|
|
COMPLEX*16 ZLARND
|
|
EXTERNAL DLARAN, ZLARND
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZLASET
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, DCMPLX, EXP, LOG, MAX, MIN, MOD
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
|
|
*
|
|
* Insure a correct ISEED
|
|
*
|
|
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
|
|
$ ISEED( 4 ) = ISEED( 4 ) + 1
|
|
*
|
|
* Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
|
|
* and RCOND
|
|
*
|
|
IF( ITYPE.NE.0 ) THEN
|
|
IF( ABS( ITYPE ).GE.4 ) THEN
|
|
KBEG = MAX( 1, MIN( N, NZ1+1 ) )
|
|
KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
|
|
KLEN = KEND + 1 - KBEG
|
|
ELSE
|
|
KBEG = 1
|
|
KEND = N
|
|
KLEN = N
|
|
END IF
|
|
ISDB = 1
|
|
ISDE = 0
|
|
GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
|
|
$ 180, 200 )ABS( ITYPE )
|
|
*
|
|
* abs(ITYPE) = 1: Identity
|
|
*
|
|
10 CONTINUE
|
|
DO 20 JD = 1, N
|
|
A( JD, JD ) = CONE
|
|
20 CONTINUE
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 2: Transposed Jordan block
|
|
*
|
|
30 CONTINUE
|
|
DO 40 JD = 1, N - 1
|
|
A( JD+1, JD ) = CONE
|
|
40 CONTINUE
|
|
ISDB = 1
|
|
ISDE = N - 1
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 3: Transposed Jordan block, followed by the
|
|
* identity.
|
|
*
|
|
50 CONTINUE
|
|
K = ( N-1 ) / 2
|
|
DO 60 JD = 1, K
|
|
A( JD+1, JD ) = CONE
|
|
60 CONTINUE
|
|
ISDB = 1
|
|
ISDE = K
|
|
DO 70 JD = K + 2, 2*K + 1
|
|
A( JD, JD ) = CONE
|
|
70 CONTINUE
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 4: 1,...,k
|
|
*
|
|
80 CONTINUE
|
|
DO 90 JD = KBEG, KEND
|
|
A( JD, JD ) = DCMPLX( JD-NZ1 )
|
|
90 CONTINUE
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 5: One large D value:
|
|
*
|
|
100 CONTINUE
|
|
DO 110 JD = KBEG + 1, KEND
|
|
A( JD, JD ) = DCMPLX( RCOND )
|
|
110 CONTINUE
|
|
A( KBEG, KBEG ) = CONE
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 6: One small D value:
|
|
*
|
|
120 CONTINUE
|
|
DO 130 JD = KBEG, KEND - 1
|
|
A( JD, JD ) = CONE
|
|
130 CONTINUE
|
|
A( KEND, KEND ) = DCMPLX( RCOND )
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 7: Exponentially distributed D values:
|
|
*
|
|
140 CONTINUE
|
|
A( KBEG, KBEG ) = CONE
|
|
IF( KLEN.GT.1 ) THEN
|
|
ALPHA = RCOND**( ONE / DBLE( KLEN-1 ) )
|
|
DO 150 I = 2, KLEN
|
|
A( NZ1+I, NZ1+I ) = DCMPLX( ALPHA**DBLE( I-1 ) )
|
|
150 CONTINUE
|
|
END IF
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 8: Arithmetically distributed D values:
|
|
*
|
|
160 CONTINUE
|
|
A( KBEG, KBEG ) = CONE
|
|
IF( KLEN.GT.1 ) THEN
|
|
ALPHA = ( ONE-RCOND ) / DBLE( KLEN-1 )
|
|
DO 170 I = 2, KLEN
|
|
A( NZ1+I, NZ1+I ) = DCMPLX( DBLE( KLEN-I )*ALPHA+RCOND )
|
|
170 CONTINUE
|
|
END IF
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
|
|
*
|
|
180 CONTINUE
|
|
ALPHA = LOG( RCOND )
|
|
DO 190 JD = KBEG, KEND
|
|
A( JD, JD ) = EXP( ALPHA*DLARAN( ISEED ) )
|
|
190 CONTINUE
|
|
GO TO 220
|
|
*
|
|
* abs(ITYPE) = 10: Randomly distributed D values from DIST
|
|
*
|
|
200 CONTINUE
|
|
DO 210 JD = KBEG, KEND
|
|
A( JD, JD ) = ZLARND( IDIST, ISEED )
|
|
210 CONTINUE
|
|
*
|
|
220 CONTINUE
|
|
*
|
|
* Scale by AMAGN
|
|
*
|
|
DO 230 JD = KBEG, KEND
|
|
A( JD, JD ) = AMAGN*DBLE( A( JD, JD ) )
|
|
230 CONTINUE
|
|
DO 240 JD = ISDB, ISDE
|
|
A( JD+1, JD ) = AMAGN*DBLE( A( JD+1, JD ) )
|
|
240 CONTINUE
|
|
*
|
|
* If RSIGN = .TRUE., assign random signs to diagonal and
|
|
* subdiagonal
|
|
*
|
|
IF( RSIGN ) THEN
|
|
DO 250 JD = KBEG, KEND
|
|
IF( DBLE( A( JD, JD ) ).NE.ZERO ) THEN
|
|
CTEMP = ZLARND( 3, ISEED )
|
|
CTEMP = CTEMP / ABS( CTEMP )
|
|
A( JD, JD ) = CTEMP*DBLE( A( JD, JD ) )
|
|
END IF
|
|
250 CONTINUE
|
|
DO 260 JD = ISDB, ISDE
|
|
IF( DBLE( A( JD+1, JD ) ).NE.ZERO ) THEN
|
|
CTEMP = ZLARND( 3, ISEED )
|
|
CTEMP = CTEMP / ABS( CTEMP )
|
|
A( JD+1, JD ) = CTEMP*DBLE( A( JD+1, JD ) )
|
|
END IF
|
|
260 CONTINUE
|
|
END IF
|
|
*
|
|
* Reverse if ITYPE < 0
|
|
*
|
|
IF( ITYPE.LT.0 ) THEN
|
|
DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
|
|
CTEMP = A( JD, JD )
|
|
A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
|
|
A( KBEG+KEND-JD, KBEG+KEND-JD ) = CTEMP
|
|
270 CONTINUE
|
|
DO 280 JD = 1, ( N-1 ) / 2
|
|
CTEMP = A( JD+1, JD )
|
|
A( JD+1, JD ) = A( N+1-JD, N-JD )
|
|
A( N+1-JD, N-JD ) = CTEMP
|
|
280 CONTINUE
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
* Fill in upper triangle
|
|
*
|
|
IF( TRIANG.NE.ZERO ) THEN
|
|
DO 300 JC = 2, N
|
|
DO 290 JR = 1, JC - 1
|
|
A( JR, JC ) = TRIANG*ZLARND( IDIST, ISEED )
|
|
290 CONTINUE
|
|
300 CONTINUE
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZLATM4
|
|
*
|
|
END
|
|
|