Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1113 lines
42 KiB

*> \brief \b ALAHD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ALAHD( IOUNIT, PATH )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER IOUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ALAHD prints header information for the different test paths.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IOUNIT
*> \verbatim
*> IOUNIT is INTEGER
*> The unit number to which the header information should be
*> printed.
*> \endverbatim
*>
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The name of the path for which the header information is to
*> be printed. Current paths are
*> _GE: General matrices
*> _GB: General band
*> _GT: General Tridiagonal
*> _PO: Symmetric or Hermitian positive definite
*> _PS: Symmetric or Hermitian positive semi-definite
*> _PP: Symmetric or Hermitian positive definite packed
*> _PB: Symmetric or Hermitian positive definite band
*> _PT: Symmetric or Hermitian positive definite tridiagonal
*> _SY: Symmetric indefinite,
*> with partial (Bunch-Kaufman) pivoting
*> _SR: Symmetric indefinite,
*> with rook (bounded Bunch-Kaufman) pivoting
*> _SK: Symmetric indefinite,
*> with rook (bounded Bunch-Kaufman) pivoting
*> ( new storage format for factors:
*> L and diagonal of D is stored in A,
*> subdiagonal of D is stored in E )
*> _SP: Symmetric indefinite packed,
*> with partial (Bunch-Kaufman) pivoting
*> _HA: (complex) Hermitian ,
*> with Aasen Algorithm
*> _HE: (complex) Hermitian indefinite,
*> with partial (Bunch-Kaufman) pivoting
*> _HR: (complex) Hermitian indefinite,
*> with rook (bounded Bunch-Kaufman) pivoting
*> _HK: (complex) Hermitian indefinite,
*> with rook (bounded Bunch-Kaufman) pivoting
*> ( new storage format for factors:
*> L and diagonal of D is stored in A,
*> subdiagonal of D is stored in E )
*> _HP: (complex) Hermitian indefinite packed,
*> with partial (Bunch-Kaufman) pivoting
*> _TR: Triangular
*> _TP: Triangular packed
*> _TB: Triangular band
*> _QR: QR (general matrices)
*> _LQ: LQ (general matrices)
*> _QL: QL (general matrices)
*> _RQ: RQ (general matrices)
*> _QP: QR with column pivoting
*> _TZ: Trapezoidal
*> _LS: Least Squares driver routines
*> _LU: LU variants
*> _CH: Cholesky variants
*> _QS: QR variants
*> _QT: QRT (general matrices)
*> _QX: QRT (triangular-pentagonal matrices)
*> _TS: QR routines for tall-skinny and short-wide matrices
*> _HH: Householder reconstruction for tall-skinny matrices
*> The first character must be one of S, D, C, or Z (C or Z only
*> if complex).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup aux_lin
*
* =====================================================================
SUBROUTINE ALAHD( IOUNIT, PATH )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER IOUNIT
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL CORZ, SORD
CHARACTER C1, C3
CHARACTER*2 P2
CHARACTER*4 EIGCNM
CHARACTER*32 SUBNAM
CHARACTER*9 SYM
* ..
* .. External Functions ..
LOGICAL LSAME, LSAMEN
EXTERNAL LSAME, LSAMEN
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN_TRIM
* ..
* .. Executable Statements ..
*
IF( IOUNIT.LE.0 )
$ RETURN
C1 = PATH( 1: 1 )
C3 = PATH( 3: 3 )
P2 = PATH( 2: 3 )
SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' )
CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' )
IF( .NOT.( SORD .OR. CORZ ) )
$ RETURN
*
IF( LSAMEN( 2, P2, 'GE' ) ) THEN
*
* GE: General dense
*
WRITE( IOUNIT, FMT = 9999 )PATH
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9979 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9962 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9960 )3
WRITE( IOUNIT, FMT = 9959 )4
WRITE( IOUNIT, FMT = 9958 )5
WRITE( IOUNIT, FMT = 9957 )6
WRITE( IOUNIT, FMT = 9956 )7
WRITE( IOUNIT, FMT = 9955 )8
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'GB' ) ) THEN
*
* GB: General band
*
WRITE( IOUNIT, FMT = 9998 )PATH
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9978 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9962 )1
WRITE( IOUNIT, FMT = 9960 )2
WRITE( IOUNIT, FMT = 9959 )3
WRITE( IOUNIT, FMT = 9958 )4
WRITE( IOUNIT, FMT = 9957 )5
WRITE( IOUNIT, FMT = 9956 )6
WRITE( IOUNIT, FMT = 9955 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'GT' ) ) THEN
*
* GT: General tridiagonal
*
WRITE( IOUNIT, FMT = 9997 )PATH
WRITE( IOUNIT, FMT = 9977 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9962 )1
WRITE( IOUNIT, FMT = 9960 )2
WRITE( IOUNIT, FMT = 9959 )3
WRITE( IOUNIT, FMT = 9958 )4
WRITE( IOUNIT, FMT = 9957 )5
WRITE( IOUNIT, FMT = 9956 )6
WRITE( IOUNIT, FMT = 9955 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'PO' ) .OR. LSAMEN( 2, P2, 'PP' ) ) THEN
*
* PO: Positive definite full
* PP: Positive definite packed
*
IF( SORD ) THEN
SYM = 'Symmetric'
ELSE
SYM = 'Hermitian'
END IF
IF( LSAME( C3, 'O' ) ) THEN
WRITE( IOUNIT, FMT = 9996 )PATH, SYM
ELSE
WRITE( IOUNIT, FMT = 9995 )PATH, SYM
END IF
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9975 )PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9954 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9960 )3
WRITE( IOUNIT, FMT = 9959 )4
WRITE( IOUNIT, FMT = 9958 )5
WRITE( IOUNIT, FMT = 9957 )6
WRITE( IOUNIT, FMT = 9956 )7
WRITE( IOUNIT, FMT = 9955 )8
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'PS' ) ) THEN
*
* PS: Positive semi-definite full
*
IF( SORD ) THEN
SYM = 'Symmetric'
ELSE
SYM = 'Hermitian'
END IF
IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'C' ) ) THEN
EIGCNM = '1E04'
ELSE
EIGCNM = '1D12'
END IF
WRITE( IOUNIT, FMT = 9995 )PATH, SYM
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 8973 )EIGCNM, EIGCNM, EIGCNM
WRITE( IOUNIT, FMT = '( '' Difference:'' )' )
WRITE( IOUNIT, FMT = 8972 )C1
WRITE( IOUNIT, FMT = '( '' Test ratio:'' )' )
WRITE( IOUNIT, FMT = 8950 )
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
ELSE IF( LSAMEN( 2, P2, 'PB' ) ) THEN
*
* PB: Positive definite band
*
IF( SORD ) THEN
WRITE( IOUNIT, FMT = 9994 )PATH, 'Symmetric'
ELSE
WRITE( IOUNIT, FMT = 9994 )PATH, 'Hermitian'
END IF
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9973 )PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9954 )1
WRITE( IOUNIT, FMT = 9960 )2
WRITE( IOUNIT, FMT = 9959 )3
WRITE( IOUNIT, FMT = 9958 )4
WRITE( IOUNIT, FMT = 9957 )5
WRITE( IOUNIT, FMT = 9956 )6
WRITE( IOUNIT, FMT = 9955 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'PT' ) ) THEN
*
* PT: Positive definite tridiagonal
*
IF( SORD ) THEN
WRITE( IOUNIT, FMT = 9993 )PATH, 'Symmetric'
ELSE
WRITE( IOUNIT, FMT = 9993 )PATH, 'Hermitian'
END IF
WRITE( IOUNIT, FMT = 9976 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9952 )1
WRITE( IOUNIT, FMT = 9960 )2
WRITE( IOUNIT, FMT = 9959 )3
WRITE( IOUNIT, FMT = 9958 )4
WRITE( IOUNIT, FMT = 9957 )5
WRITE( IOUNIT, FMT = 9956 )6
WRITE( IOUNIT, FMT = 9955 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'SY' ) ) THEN
*
* SY: Symmetric indefinite full,
* with partial (Bunch-Kaufman) pivoting algorithm
*
IF( LSAME( C3, 'Y' ) ) THEN
WRITE( IOUNIT, FMT = 9992 )PATH, 'Symmetric'
ELSE
WRITE( IOUNIT, FMT = 9991 )PATH, 'Symmetric'
END IF
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
IF( SORD ) THEN
WRITE( IOUNIT, FMT = 9972 )
ELSE
WRITE( IOUNIT, FMT = 9971 )
END IF
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9953 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9960 )3
WRITE( IOUNIT, FMT = 9960 )4
WRITE( IOUNIT, FMT = 9959 )5
WRITE( IOUNIT, FMT = 9958 )6
WRITE( IOUNIT, FMT = 9956 )7
WRITE( IOUNIT, FMT = 9957 )8
WRITE( IOUNIT, FMT = 9955 )9
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'SR' ) .OR. LSAMEN( 2, P2, 'SK') ) THEN
*
* SR: Symmetric indefinite full,
* with rook (bounded Bunch-Kaufman) pivoting algorithm
*
* SK: Symmetric indefinite full,
* with rook (bounded Bunch-Kaufman) pivoting algorithm,
* ( new storage format for factors:
* L and diagonal of D is stored in A,
* subdiagonal of D is stored in E )
*
WRITE( IOUNIT, FMT = 9892 )PATH, 'Symmetric'
*
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
IF( SORD ) THEN
WRITE( IOUNIT, FMT = 9972 )
ELSE
WRITE( IOUNIT, FMT = 9971 )
END IF
*
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9953 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9927 )3
WRITE( IOUNIT, FMT = 9928 )
WRITE( IOUNIT, FMT = 9926 )4
WRITE( IOUNIT, FMT = 9928 )
WRITE( IOUNIT, FMT = 9960 )5
WRITE( IOUNIT, FMT = 9959 )6
WRITE( IOUNIT, FMT = 9955 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'SP' ) ) THEN
*
* SP: Symmetric indefinite packed,
* with partial (Bunch-Kaufman) pivoting algorithm
*
IF( LSAME( C3, 'Y' ) ) THEN
WRITE( IOUNIT, FMT = 9992 )PATH, 'Symmetric'
ELSE
WRITE( IOUNIT, FMT = 9991 )PATH, 'Symmetric'
END IF
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
IF( SORD ) THEN
WRITE( IOUNIT, FMT = 9972 )
ELSE
WRITE( IOUNIT, FMT = 9971 )
END IF
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9953 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9960 )3
WRITE( IOUNIT, FMT = 9959 )4
WRITE( IOUNIT, FMT = 9958 )5
WRITE( IOUNIT, FMT = 9956 )6
WRITE( IOUNIT, FMT = 9957 )7
WRITE( IOUNIT, FMT = 9955 )8
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'HA' ) ) THEN
*
* HA: Hermitian,
* with Assen Algorithm
*
WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian'
*
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9972 )
*
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9953 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9960 )3
WRITE( IOUNIT, FMT = 9960 )4
WRITE( IOUNIT, FMT = 9959 )5
WRITE( IOUNIT, FMT = 9958 )6
WRITE( IOUNIT, FMT = 9956 )7
WRITE( IOUNIT, FMT = 9957 )8
WRITE( IOUNIT, FMT = 9955 )9
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'HE' ) ) THEN
*
* HE: Hermitian indefinite full,
* with partial (Bunch-Kaufman) pivoting algorithm
*
WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian'
*
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9972 )
*
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9953 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9960 )3
WRITE( IOUNIT, FMT = 9960 )4
WRITE( IOUNIT, FMT = 9959 )5
WRITE( IOUNIT, FMT = 9958 )6
WRITE( IOUNIT, FMT = 9956 )7
WRITE( IOUNIT, FMT = 9957 )8
WRITE( IOUNIT, FMT = 9955 )9
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'HR' ) .OR. LSAMEN( 2, P2, 'HR' ) ) THEN
*
* HR: Hermitian indefinite full,
* with rook (bounded Bunch-Kaufman) pivoting algorithm
*
* HK: Hermitian indefinite full,
* with rook (bounded Bunch-Kaufman) pivoting algorithm,
* ( new storage format for factors:
* L and diagonal of D is stored in A,
* subdiagonal of D is stored in E )
*
WRITE( IOUNIT, FMT = 9892 )PATH, 'Hermitian'
*
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9972 )
*
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9953 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9927 )3
WRITE( IOUNIT, FMT = 9928 )
WRITE( IOUNIT, FMT = 9926 )4
WRITE( IOUNIT, FMT = 9928 )
WRITE( IOUNIT, FMT = 9960 )5
WRITE( IOUNIT, FMT = 9959 )6
WRITE( IOUNIT, FMT = 9955 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'HP' ) ) THEN
*
* HP: Hermitian indefinite packed,
* with partial (Bunch-Kaufman) pivoting algorithm
*
IF( LSAME( C3, 'E' ) ) THEN
WRITE( IOUNIT, FMT = 9992 )PATH, 'Hermitian'
ELSE
WRITE( IOUNIT, FMT = 9991 )PATH, 'Hermitian'
END IF
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9972 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9953 )1
WRITE( IOUNIT, FMT = 9961 )2
WRITE( IOUNIT, FMT = 9960 )3
WRITE( IOUNIT, FMT = 9959 )4
WRITE( IOUNIT, FMT = 9958 )5
WRITE( IOUNIT, FMT = 9956 )6
WRITE( IOUNIT, FMT = 9957 )7
WRITE( IOUNIT, FMT = 9955 )8
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'TR' ) .OR. LSAMEN( 2, P2, 'TP' ) ) THEN
*
* TR: Triangular full
* TP: Triangular packed
*
IF( LSAME( C3, 'R' ) ) THEN
WRITE( IOUNIT, FMT = 9990 )PATH
SUBNAM = PATH( 1: 1 ) // 'LATRS'
ELSE
WRITE( IOUNIT, FMT = 9989 )PATH
SUBNAM = PATH( 1: 1 ) // 'LATPS'
END IF
WRITE( IOUNIT, FMT = 9966 )PATH
WRITE( IOUNIT, FMT = 9965 )SUBNAM(1:LEN_TRIM( SUBNAM ))
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9961 )1
WRITE( IOUNIT, FMT = 9960 )2
WRITE( IOUNIT, FMT = 9959 )3
WRITE( IOUNIT, FMT = 9958 )4
WRITE( IOUNIT, FMT = 9957 )5
WRITE( IOUNIT, FMT = 9956 )6
WRITE( IOUNIT, FMT = 9955 )7
WRITE( IOUNIT, FMT = 9951 )SUBNAM(1:LEN_TRIM( SUBNAM )), 8
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'TB' ) ) THEN
*
* TB: Triangular band
*
WRITE( IOUNIT, FMT = 9988 )PATH
SUBNAM = PATH( 1: 1 ) // 'LATBS'
WRITE( IOUNIT, FMT = 9964 )PATH
WRITE( IOUNIT, FMT = 9963 )SUBNAM(1:LEN_TRIM( SUBNAM ))
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9960 )1
WRITE( IOUNIT, FMT = 9959 )2
WRITE( IOUNIT, FMT = 9958 )3
WRITE( IOUNIT, FMT = 9957 )4
WRITE( IOUNIT, FMT = 9956 )5
WRITE( IOUNIT, FMT = 9955 )6
WRITE( IOUNIT, FMT = 9951 )SUBNAM(1:LEN_TRIM( SUBNAM )), 7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'QR' ) ) THEN
*
* QR decomposition of rectangular matrices
*
WRITE( IOUNIT, FMT = 9987 )PATH, 'QR'
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9970 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9950 )1
WRITE( IOUNIT, FMT = 6950 )8
WRITE( IOUNIT, FMT = 9946 )2
WRITE( IOUNIT, FMT = 9944 )3, 'M'
WRITE( IOUNIT, FMT = 9943 )4, 'M'
WRITE( IOUNIT, FMT = 9942 )5, 'M'
WRITE( IOUNIT, FMT = 9941 )6, 'M'
WRITE( IOUNIT, FMT = 9960 )7
WRITE( IOUNIT, FMT = 6660 )9
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'LQ' ) ) THEN
*
* LQ decomposition of rectangular matrices
*
WRITE( IOUNIT, FMT = 9987 )PATH, 'LQ'
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9970 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9949 )1
WRITE( IOUNIT, FMT = 9945 )2
WRITE( IOUNIT, FMT = 9944 )3, 'N'
WRITE( IOUNIT, FMT = 9943 )4, 'N'
WRITE( IOUNIT, FMT = 9942 )5, 'N'
WRITE( IOUNIT, FMT = 9941 )6, 'N'
WRITE( IOUNIT, FMT = 9960 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'QL' ) ) THEN
*
* QL decomposition of rectangular matrices
*
WRITE( IOUNIT, FMT = 9987 )PATH, 'QL'
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9970 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9948 )1
WRITE( IOUNIT, FMT = 9946 )2
WRITE( IOUNIT, FMT = 9944 )3, 'M'
WRITE( IOUNIT, FMT = 9943 )4, 'M'
WRITE( IOUNIT, FMT = 9942 )5, 'M'
WRITE( IOUNIT, FMT = 9941 )6, 'M'
WRITE( IOUNIT, FMT = 9960 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'RQ' ) ) THEN
*
* RQ decomposition of rectangular matrices
*
WRITE( IOUNIT, FMT = 9987 )PATH, 'RQ'
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9970 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9947 )1
WRITE( IOUNIT, FMT = 9945 )2
WRITE( IOUNIT, FMT = 9944 )3, 'N'
WRITE( IOUNIT, FMT = 9943 )4, 'N'
WRITE( IOUNIT, FMT = 9942 )5, 'N'
WRITE( IOUNIT, FMT = 9941 )6, 'N'
WRITE( IOUNIT, FMT = 9960 )7
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'QP' ) ) THEN
*
* QR decomposition with column pivoting
*
WRITE( IOUNIT, FMT = 9986 )PATH
WRITE( IOUNIT, FMT = 9969 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9940 )1
WRITE( IOUNIT, FMT = 9939 )2
WRITE( IOUNIT, FMT = 9938 )3
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'TZ' ) ) THEN
*
* TZ: Trapezoidal
*
WRITE( IOUNIT, FMT = 9985 )PATH
WRITE( IOUNIT, FMT = 9968 )
WRITE( IOUNIT, FMT = 9929 )C1
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 9940 )1
WRITE( IOUNIT, FMT = 9937 )2
WRITE( IOUNIT, FMT = 9938 )3
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'LS' ) ) THEN
*
* LS: Least Squares driver routines for
* LS, LST, TSLS, LSD, LSS, LSX and LSY.
*
WRITE( IOUNIT, FMT = 9984 )PATH
WRITE( IOUNIT, FMT = 9967 )
WRITE( IOUNIT, FMT = 9921 )C1, C1, C1, C1, C1, C1
WRITE( IOUNIT, FMT = 9935 )1
WRITE( IOUNIT, FMT = 9931 )2
WRITE( IOUNIT, FMT = 9919 )
WRITE( IOUNIT, FMT = 9933 )7
WRITE( IOUNIT, FMT = 9935 )8
WRITE( IOUNIT, FMT = 9934 )9
WRITE( IOUNIT, FMT = 9932 )10
WRITE( IOUNIT, FMT = 9920 )
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'LU' ) ) THEN
*
* LU factorization variants
*
WRITE( IOUNIT, FMT = 9983 )PATH
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9979 )
WRITE( IOUNIT, FMT = '( '' Test ratio:'' )' )
WRITE( IOUNIT, FMT = 9962 )1
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'CH' ) ) THEN
*
* Cholesky factorization variants
*
WRITE( IOUNIT, FMT = 9982 )PATH
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9974 )
WRITE( IOUNIT, FMT = '( '' Test ratio:'' )' )
WRITE( IOUNIT, FMT = 9954 )1
WRITE( IOUNIT, FMT = '( '' Messages:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'QS' ) ) THEN
*
* QR factorization variants
*
WRITE( IOUNIT, FMT = 9981 )PATH
WRITE( IOUNIT, FMT = '( '' Matrix types:'' )' )
WRITE( IOUNIT, FMT = 9970 )
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
*
ELSE IF( LSAMEN( 2, P2, 'QT' ) ) THEN
*
* QRT (general matrices)
*
WRITE( IOUNIT, FMT = 8000 ) PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 8011 ) 1
WRITE( IOUNIT, FMT = 8012 ) 2
WRITE( IOUNIT, FMT = 8013 ) 3
WRITE( IOUNIT, FMT = 8014 ) 4
WRITE( IOUNIT, FMT = 8015 ) 5
WRITE( IOUNIT, FMT = 8016 ) 6
*
ELSE IF( LSAMEN( 2, P2, 'QX' ) ) THEN
*
* QRT (triangular-pentagonal)
*
WRITE( IOUNIT, FMT = 8001 ) PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 8017 ) 1
WRITE( IOUNIT, FMT = 8018 ) 2
WRITE( IOUNIT, FMT = 8019 ) 3
WRITE( IOUNIT, FMT = 8020 ) 4
WRITE( IOUNIT, FMT = 8021 ) 5
WRITE( IOUNIT, FMT = 8022 ) 6
*
ELSE IF( LSAMEN( 2, P2, 'TQ' ) ) THEN
*
* QRT (triangular-pentagonal)
*
WRITE( IOUNIT, FMT = 8002 ) PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 8023 ) 1
WRITE( IOUNIT, FMT = 8024 ) 2
WRITE( IOUNIT, FMT = 8025 ) 3
WRITE( IOUNIT, FMT = 8026 ) 4
WRITE( IOUNIT, FMT = 8027 ) 5
WRITE( IOUNIT, FMT = 8028 ) 6
*
ELSE IF( LSAMEN( 2, P2, 'XQ' ) ) THEN
*
* QRT (triangular-pentagonal)
*
WRITE( IOUNIT, FMT = 8003 ) PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 8029 ) 1
WRITE( IOUNIT, FMT = 8030 ) 2
WRITE( IOUNIT, FMT = 8031 ) 3
WRITE( IOUNIT, FMT = 8032 ) 4
WRITE( IOUNIT, FMT = 8033 ) 5
WRITE( IOUNIT, FMT = 8034 ) 6
*
ELSE IF( LSAMEN( 2, P2, 'TS' ) ) THEN
*
* TS: QR routines for tall-skinny and short-wide matrices
*
WRITE( IOUNIT, FMT = 8004 ) PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 8035 ) 1
WRITE( IOUNIT, FMT = 8036 ) 2
WRITE( IOUNIT, FMT = 8037 ) 3
WRITE( IOUNIT, FMT = 8038 ) 4
WRITE( IOUNIT, FMT = 8039 ) 5
WRITE( IOUNIT, FMT = 8040 ) 6
*
ELSE IF( LSAMEN( 2, P2, 'HH' ) ) THEN
*
* HH: Householder reconstruction for tall-skinny matrices
*
WRITE( IOUNIT, FMT = 8005 ) PATH
WRITE( IOUNIT, FMT = '( '' Test ratios:'' )' )
WRITE( IOUNIT, FMT = 8050 ) 1
WRITE( IOUNIT, FMT = 8051 ) 2
WRITE( IOUNIT, FMT = 8052 ) 3
WRITE( IOUNIT, FMT = 8053 ) 4
WRITE( IOUNIT, FMT = 8054 ) 5
WRITE( IOUNIT, FMT = 8055 ) 6
*
ELSE
*
* Print error message if no header is available.
*
WRITE( IOUNIT, FMT = 9980 )PATH
END IF
*
* First line of header
*
9999 FORMAT( / 1X, A3, ': General dense matrices' )
9998 FORMAT( / 1X, A3, ': General band matrices' )
9997 FORMAT( / 1X, A3, ': General tridiagonal' )
9996 FORMAT( / 1X, A3, ': ', A9, ' positive definite matrices' )
9995 FORMAT( / 1X, A3, ': ', A9, ' positive definite packed matrices'
$ )
9994 FORMAT( / 1X, A3, ': ', A9, ' positive definite band matrices' )
9993 FORMAT( / 1X, A3, ': ', A9, ' positive definite tridiagonal' )
9992 FORMAT( / 1X, A3, ': ', A9, ' indefinite matrices',
$ ', partial (Bunch-Kaufman) pivoting' )
9991 FORMAT( / 1X, A3, ': ', A9, ' indefinite packed matrices',
$ ', partial (Bunch-Kaufman) pivoting' )
9892 FORMAT( / 1X, A3, ': ', A9, ' indefinite matrices',
$ ', "rook" (bounded Bunch-Kaufman) pivoting' )
9891 FORMAT( / 1X, A3, ': ', A9, ' indefinite packed matrices',
$ ', "rook" (bounded Bunch-Kaufman) pivoting' )
9990 FORMAT( / 1X, A3, ': Triangular matrices' )
9989 FORMAT( / 1X, A3, ': Triangular packed matrices' )
9988 FORMAT( / 1X, A3, ': Triangular band matrices' )
9987 FORMAT( / 1X, A3, ': ', A2, ' factorization of general matrices'
$ )
9986 FORMAT( / 1X, A3, ': QR factorization with column pivoting' )
9985 FORMAT( / 1X, A3, ': RQ factorization of trapezoidal matrix' )
9984 FORMAT( / 1X, A3, ': Least squares driver routines' )
9983 FORMAT( / 1X, A3, ': LU factorization variants' )
9982 FORMAT( / 1X, A3, ': Cholesky factorization variants' )
9981 FORMAT( / 1X, A3, ': QR factorization variants' )
9980 FORMAT( / 1X, A3, ': No header available' )
8000 FORMAT( / 1X, A3, ': QRT factorization for general matrices' )
8001 FORMAT( / 1X, A3, ': QRT factorization for ',
$ 'triangular-pentagonal matrices' )
8002 FORMAT( / 1X, A3, ': LQT factorization for general matrices' )
8003 FORMAT( / 1X, A3, ': LQT factorization for ',
$ 'triangular-pentagonal matrices' )
8004 FORMAT( / 1X, A3, ': TS factorization for ',
$ 'tall-skinny or short-wide matrices' )
8005 FORMAT( / 1X, A3, ': Householder reconstruction from TSQR',
$ ' factorization output ', /,' for tall-skinny matrices.' )
*
* GE matrix types
*
9979 FORMAT( 4X, '1. Diagonal', 24X, '7. Last n/2 columns zero', / 4X,
$ '2. Upper triangular', 16X,
$ '8. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '3. Lower triangular', 16X, '9. Random, CNDNUM = 0.1/EPS',
$ / 4X, '4. Random, CNDNUM = 2', 13X,
$ '10. Scaled near underflow', / 4X, '5. First column zero',
$ 14X, '11. Scaled near overflow', / 4X,
$ '6. Last column zero' )
*
* GB matrix types
*
9978 FORMAT( 4X, '1. Random, CNDNUM = 2', 14X,
$ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '2. First column zero', 15X, '6. Random, CNDNUM = .01/EPS',
$ / 4X, '3. Last column zero', 16X,
$ '7. Scaled near underflow', / 4X,
$ '4. Last n/2 columns zero', 11X, '8. Scaled near overflow' )
*
* GT matrix types
*
9977 FORMAT( ' Matrix types (1-6 have specified condition numbers):',
$ / 4X, '1. Diagonal', 24X, '7. Random, unspecified CNDNUM',
$ / 4X, '2. Random, CNDNUM = 2', 14X, '8. First column zero',
$ / 4X, '3. Random, CNDNUM = sqrt(0.1/EPS)', 2X,
$ '9. Last column zero', / 4X, '4. Random, CNDNUM = 0.1/EPS',
$ 7X, '10. Last n/2 columns zero', / 4X,
$ '5. Scaled near underflow', 10X,
$ '11. Scaled near underflow', / 4X,
$ '6. Scaled near overflow', 11X, '12. Scaled near overflow' )
*
* PT matrix types
*
9976 FORMAT( ' Matrix types (1-6 have specified condition numbers):',
$ / 4X, '1. Diagonal', 24X, '7. Random, unspecified CNDNUM',
$ / 4X, '2. Random, CNDNUM = 2', 14X,
$ '8. First row and column zero', / 4X,
$ '3. Random, CNDNUM = sqrt(0.1/EPS)', 2X,
$ '9. Last row and column zero', / 4X,
$ '4. Random, CNDNUM = 0.1/EPS', 7X,
$ '10. Middle row and column zero', / 4X,
$ '5. Scaled near underflow', 10X,
$ '11. Scaled near underflow', / 4X,
$ '6. Scaled near overflow', 11X, '12. Scaled near overflow' )
*
* PO, PP matrix types
*
9975 FORMAT( 4X, '1. Diagonal', 24X,
$ '6. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '2. Random, CNDNUM = 2', 14X, '7. Random, CNDNUM = 0.1/EPS',
$ / 3X, '*3. First row and column zero', 7X,
$ '8. Scaled near underflow', / 3X,
$ '*4. Last row and column zero', 8X,
$ '9. Scaled near overflow', / 3X,
$ '*5. Middle row and column zero', / 3X,
$ '(* - tests error exits from ', A3,
$ 'TRF, no test ratios are computed)' )
*
* CH matrix types
*
9974 FORMAT( 4X, '1. Diagonal', 24X,
$ '6. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '2. Random, CNDNUM = 2', 14X, '7. Random, CNDNUM = 0.1/EPS',
$ / 3X, '*3. First row and column zero', 7X,
$ '8. Scaled near underflow', / 3X,
$ '*4. Last row and column zero', 8X,
$ '9. Scaled near overflow', / 3X,
$ '*5. Middle row and column zero', / 3X,
$ '(* - tests error exits, no test ratios are computed)' )
*
* PS matrix types
*
8973 FORMAT( 4X, '1. Diagonal', / 4X, '2. Random, CNDNUM = 2', 14X,
$ / 3X, '*3. Nonzero eigenvalues of: D(1:RANK-1)=1 and ',
$ 'D(RANK) = 1.0/', A4, / 3X,
$ '*4. Nonzero eigenvalues of: D(1)=1 and ',
$ ' D(2:RANK) = 1.0/', A4, / 3X,
$ '*5. Nonzero eigenvalues of: D(I) = ', A4,
$ '**(-(I-1)/(RANK-1)) ', ' I=1:RANK', / 4X,
$ '6. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '7. Random, CNDNUM = 0.1/EPS', / 4X,
$ '8. Scaled near underflow', / 4X, '9. Scaled near overflow',
$ / 3X, '(* - Semi-definite tests )' )
8972 FORMAT( 3X, 'RANK minus computed rank, returned by ', A, 'PSTRF' )
*
* PB matrix types
*
9973 FORMAT( 4X, '1. Random, CNDNUM = 2', 14X,
$ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 3X,
$ '*2. First row and column zero', 7X,
$ '6. Random, CNDNUM = 0.1/EPS', / 3X,
$ '*3. Last row and column zero', 8X,
$ '7. Scaled near underflow', / 3X,
$ '*4. Middle row and column zero', 6X,
$ '8. Scaled near overflow', / 3X,
$ '(* - tests error exits from ', A3,
$ 'TRF, no test ratios are computed)' )
*
* SSY, SSR, SSP, CHE, CHR, CHP matrix types
*
9972 FORMAT( 4X, '1. Diagonal', 24X,
$ '6. Last n/2 rows and columns zero', / 4X,
$ '2. Random, CNDNUM = 2', 14X,
$ '7. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '3. First row and column zero', 7X,
$ '8. Random, CNDNUM = 0.1/EPS', / 4X,
$ '4. Last row and column zero', 8X,
$ '9. Scaled near underflow', / 4X,
$ '5. Middle row and column zero', 5X,
$ '10. Scaled near overflow' )
*
* CSY, CSR, CSP matrix types
*
9971 FORMAT( 4X, '1. Diagonal', 24X,
$ '7. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '2. Random, CNDNUM = 2', 14X, '8. Random, CNDNUM = 0.1/EPS',
$ / 4X, '3. First row and column zero', 7X,
$ '9. Scaled near underflow', / 4X,
$ '4. Last row and column zero', 7X,
$ '10. Scaled near overflow', / 4X,
$ '5. Middle row and column zero', 5X,
$ '11. Block diagonal matrix', / 4X,
$ '6. Last n/2 rows and columns zero' )
*
* QR matrix types
*
9970 FORMAT( 4X, '1. Diagonal', 24X,
$ '5. Random, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '2. Upper triangular', 16X, '6. Random, CNDNUM = 0.1/EPS',
$ / 4X, '3. Lower triangular', 16X,
$ '7. Scaled near underflow', / 4X, '4. Random, CNDNUM = 2',
$ 14X, '8. Scaled near overflow' )
*
* QP matrix types
*
9969 FORMAT( ' Matrix types (2-6 have condition 1/EPS):', / 4X,
$ '1. Zero matrix', 21X, '4. First n/2 columns fixed', / 4X,
$ '2. One small eigenvalue', 12X, '5. Last n/2 columns fixed',
$ / 4X, '3. Geometric distribution', 10X,
$ '6. Every second column fixed' )
*
* TZ matrix types
*
9968 FORMAT( ' Matrix types (2-3 have condition 1/EPS):', / 4X,
$ '1. Zero matrix', / 4X, '2. One small eigenvalue', / 4X,
$ '3. Geometric distribution' )
*
* LS matrix types
*
9967 FORMAT( ' Matrix types (1-3: full rank, 4-6: rank deficient):',
$ / 4X, '1 and 4. Normal scaling', / 4X,
$ '2 and 5. Scaled near overflow', / 4X,
$ '3 and 6. Scaled near underflow' )
*
* TR, TP matrix types
*
9966 FORMAT( ' Matrix types for ', A3, ' routines:', / 4X,
$ '1. Diagonal', 24X, '6. Scaled near overflow', / 4X,
$ '2. Random, CNDNUM = 2', 14X, '7. Identity', / 4X,
$ '3. Random, CNDNUM = sqrt(0.1/EPS) ',
$ '8. Unit triangular, CNDNUM = 2', / 4X,
$ '4. Random, CNDNUM = 0.1/EPS', 8X,
$ '9. Unit, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '5. Scaled near underflow', 10X,
$ '10. Unit, CNDNUM = 0.1/EPS' )
9965 FORMAT( ' Special types for testing ', A, ':', / 3X,
$ '11. Matrix elements are O(1), large right hand side', / 3X,
$ '12. First diagonal causes overflow,',
$ ' offdiagonal column norms < 1', / 3X,
$ '13. First diagonal causes overflow,',
$ ' offdiagonal column norms > 1', / 3X,
$ '14. Growth factor underflows, solution does not overflow',
$ / 3X, '15. Small diagonal causes gradual overflow', / 3X,
$ '16. One zero diagonal element', / 3X,
$ '17. Large offdiagonals cause overflow when adding a column'
$ , / 3X, '18. Unit triangular with large right hand side' )
*
* TB matrix types
*
9964 FORMAT( ' Matrix types for ', A3, ' routines:', / 4X,
$ '1. Random, CNDNUM = 2', 14X, '6. Identity', / 4X,
$ '2. Random, CNDNUM = sqrt(0.1/EPS) ',
$ '7. Unit triangular, CNDNUM = 2', / 4X,
$ '3. Random, CNDNUM = 0.1/EPS', 8X,
$ '8. Unit, CNDNUM = sqrt(0.1/EPS)', / 4X,
$ '4. Scaled near underflow', 11X,
$ '9. Unit, CNDNUM = 0.1/EPS', / 4X,
$ '5. Scaled near overflow' )
9963 FORMAT( ' Special types for testing ', A, ':', / 3X,
$ '10. Matrix elements are O(1), large right hand side', / 3X,
$ '11. First diagonal causes overflow,',
$ ' offdiagonal column norms < 1', / 3X,
$ '12. First diagonal causes overflow,',
$ ' offdiagonal column norms > 1', / 3X,
$ '13. Growth factor underflows, solution does not overflow',
$ / 3X, '14. Small diagonal causes gradual overflow', / 3X,
$ '15. One zero diagonal element', / 3X,
$ '16. Large offdiagonals cause overflow when adding a column'
$ , / 3X, '17. Unit triangular with large right hand side' )
*
* Test ratios
*
9962 FORMAT( 3X, I2, ': norm( L * U - A ) / ( N * norm(A) * EPS )' )
9961 FORMAT( 3X, I2, ': norm( I - A*AINV ) / ',
$ '( N * norm(A) * norm(AINV) * EPS )' )
9960 FORMAT( 3X, I2, ': norm( B - A * X ) / ',
$ '( norm(A) * norm(X) * EPS )' )
6660 FORMAT( 3X, I2, ': diagonal is not non-negative')
9959 FORMAT( 3X, I2, ': norm( X - XACT ) / ',
$ '( norm(XACT) * CNDNUM * EPS )' )
9958 FORMAT( 3X, I2, ': norm( X - XACT ) / ',
$ '( norm(XACT) * CNDNUM * EPS ), refined' )
9957 FORMAT( 3X, I2, ': norm( X - XACT ) / ',
$ '( norm(XACT) * (error bound) )' )
9956 FORMAT( 3X, I2, ': (backward error) / EPS' )
9955 FORMAT( 3X, I2, ': RCOND * CNDNUM - 1.0' )
9954 FORMAT( 3X, I2, ': norm( U'' * U - A ) / ( N * norm(A) * EPS )',
$ ', or', / 7X, 'norm( L * L'' - A ) / ( N * norm(A) * EPS )'
$ )
8950 FORMAT( 3X,
$ 'norm( P * U'' * U * P'' - A ) / ( N * norm(A) * EPS )',
$ ', or', / 3X,
$ 'norm( P * L * L'' * P'' - A ) / ( N * norm(A) * EPS )' )
9953 FORMAT( 3X, I2, ': norm( U*D*U'' - A ) / ( N * norm(A) * EPS )',
$ ', or', / 7X, 'norm( L*D*L'' - A ) / ( N * norm(A) * EPS )'
$ )
9952 FORMAT( 3X, I2, ': norm( U''*D*U - A ) / ( N * norm(A) * EPS )',
$ ', or', / 7X, 'norm( L*D*L'' - A ) / ( N * norm(A) * EPS )'
$ )
9951 FORMAT( ' Test ratio for ', A, ':', / 3X, I2,
$ ': norm( s*b - A*x ) / ( norm(A) * norm(x) * EPS )' )
9950 FORMAT( 3X, I2, ': norm( R - Q'' * A ) / ( M * norm(A) * EPS )' )
6950 FORMAT( 3X, I2, ': norm( R - Q'' * A ) / ( M * norm(A) * EPS )
$ [RFPG]' )
9949 FORMAT( 3X, I2, ': norm( L - A * Q'' ) / ( N * norm(A) * EPS )' )
9948 FORMAT( 3X, I2, ': norm( L - Q'' * A ) / ( M * norm(A) * EPS )' )
9947 FORMAT( 3X, I2, ': norm( R - A * Q'' ) / ( N * norm(A) * EPS )' )
9946 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( M * EPS )' )
9945 FORMAT( 3X, I2, ': norm( I - Q*Q'' ) / ( N * EPS )' )
9944 FORMAT( 3X, I2, ': norm( Q*C - Q*C ) / ', '( ', A1,
$ ' * norm(C) * EPS )' )
9943 FORMAT( 3X, I2, ': norm( C*Q - C*Q ) / ', '( ', A1,
$ ' * norm(C) * EPS )' )
9942 FORMAT( 3X, I2, ': norm( Q''*C - Q''*C )/ ', '( ', A1,
$ ' * norm(C) * EPS )' )
9941 FORMAT( 3X, I2, ': norm( C*Q'' - C*Q'' )/ ', '( ', A1,
$ ' * norm(C) * EPS )' )
9940 FORMAT( 3X, I2, ': norm(svd(A) - svd(R)) / ',
$ '( M * norm(svd(R)) * EPS )' )
9939 FORMAT( 3X, I2, ': norm( A*P - Q*R ) / ( M * norm(A) * EPS )'
$ )
9938 FORMAT( 3X, I2, ': norm( I - Q''*Q ) / ( M * EPS )' )
9937 FORMAT( 3X, I2, ': norm( A - R*Q ) / ( M * norm(A) * EPS )'
$ )
9935 FORMAT( 3X, I2, ': norm( B - A * X ) / ',
$ '( max(M,N) * norm(A) * norm(X) * EPS )' )
9934 FORMAT( 3X, I2, ': norm( (A*X-B)'' *A ) / ',
$ '( max(M,N,NRHS) * norm(A) * norm(B) * EPS )' )
9933 FORMAT( 3X, I2, ': norm(svd(A)-svd(R)) / ',
$ '( min(M,N) * norm(svd(R)) * EPS )' )
9932 FORMAT( 3X, I2, ': Check if X is in the row space of A or A''' )
9931 FORMAT( 3X, I2, ': norm( (A*X-B)'' *A ) / ',
$ '( max(M,N,NRHS) * norm(A) * norm(B) * EPS )', / 7X,
$ 'if TRANS=''N'' and M.GE.N or TRANS=''T'' and M.LT.N, ',
$ 'otherwise', / 7X,
$ 'check if X is in the row space of A or A'' ',
$ '(overdetermined case)' )
9929 FORMAT( ' Test ratios (1-3: ', A1, 'TZRZF):' )
9919 FORMAT( 3X, ' 3-4: same as 1-2', 3X, ' 5-6: same as 1-2' )
9920 FORMAT( 3X, ' 11-14: same as 7-10', 3X, ' 15-18: same as 7-10' )
9921 FORMAT( ' Test ratios:', / ' (1-2: ', A1, 'GELS, 3-4: ', A1,
$ 'GELST, 5-6: ', A1, 'GETSLS, 7-10: ', A1, 'GELSY, 11-14: ',
$ A1, 'GETSS, 15-18: ', A1, 'GELSD)' )
9928 FORMAT( 7X, 'where ALPHA = ( 1 + SQRT( 17 ) ) / 8' )
9927 FORMAT( 3X, I2, ': ABS( Largest element in L )', / 12X,
$ ' - ( 1 / ( 1 - ALPHA ) ) + THRESH' )
9926 FORMAT( 3X, I2, ': Largest 2-Norm of 2-by-2 pivots', / 12X,
$ ' - ( ( 1 + ALPHA ) / ( 1 - ALPHA ) ) + THRESH' )
8011 FORMAT(3X,I2,': norm( R - Q''*A ) / ( M * norm(A) * EPS )' )
8012 FORMAT(3X,I2,': norm( I - Q''*Q ) / ( M * EPS )' )
8013 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( M * norm(C) * EPS )' )
8014 FORMAT(3X,I2,': norm( Q''*C - Q''*C ) / ( M * norm(C) * EPS )')
8015 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( M * norm(C) * EPS )' )
8016 FORMAT(3X,I2,': norm( C*Q'' - C*Q'' ) / ( M * norm(C) * EPS )')
8017 FORMAT(3X,I2,': norm( R - Q''*A ) / ( (M+N) * norm(A) * EPS )' )
8018 FORMAT(3X,I2,': norm( I - Q''*Q ) / ( (M+N) * EPS )' )
8019 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' )
8020 FORMAT(3X,I2,
$ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )')
8021 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' )
8022 FORMAT(3X,I2,
$ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )')
8023 FORMAT(3X,I2,': norm( L - A*Q'' ) / ( (M+N) * norm(A) * EPS )' )
8024 FORMAT(3X,I2,': norm( I - Q*Q'' ) / ( (M+N) * EPS )' )
8025 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' )
8026 FORMAT(3X,I2,
$ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )')
8027 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' )
8028 FORMAT(3X,I2,
$ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )')
8029 FORMAT(3X,I2,': norm( L - A*Q'' ) / ( (M+N) * norm(A) * EPS )' )
8030 FORMAT(3X,I2,': norm( I - Q*Q'' ) / ( (M+N) * EPS )' )
8031 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' )
8032 FORMAT(3X,I2,
$ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )')
8033 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' )
8034 FORMAT(3X,I2,
$ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )')
8035 FORMAT(3X,I2,': norm( R - Q''*A ) / ( (M+N) * norm(A) * EPS )' )
8036 FORMAT(3X,I2,': norm( I - Q''*Q ) / ( (M+N) * EPS )' )
8037 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( (M+N) * norm(C) * EPS )' )
8038 FORMAT(3X,I2,
$ ': norm( Q''*C - Q''*C ) / ( (M+N) * norm(C) * EPS )')
8039 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( (M+N) * norm(C) * EPS )' )
8040 FORMAT(3X,I2,
$ ': norm( C*Q'' - C*Q'' ) / ( (M+N) * norm(C) * EPS )')
*
8050 FORMAT(3X,I2,': norm( R - Q''*A ) / ( M * norm(A) * EPS )' )
8051 FORMAT(3X,I2,': norm( I - Q''*Q ) / ( M * EPS )' )
8052 FORMAT(3X,I2,': norm( Q*C - Q*C ) / ( M * norm(C) * EPS )' )
8053 FORMAT(3X,I2,': norm( Q''*C - Q''*C ) / ( M * norm(C) * EPS )')
8054 FORMAT(3X,I2,': norm( C*Q - C*Q ) / ( M * norm(C) * EPS )' )
8055 FORMAT(3X,I2,': norm( C*Q'' - C*Q'' ) / ( M * norm(C) * EPS )')
*
RETURN
*
* End of ALAHD
*
END