You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
711 lines
25 KiB
711 lines
25 KiB
*> \brief \b CCHKGB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS,
|
|
* NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B,
|
|
* X, XACT, WORK, RWORK, IWORK, NOUT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL TSTERR
|
|
* INTEGER LA, LAFAC, NM, NN, NNB, NNS, NOUT
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
|
|
* $ NVAL( * )
|
|
* REAL RWORK( * )
|
|
* COMPLEX A( * ), AFAC( * ), B( * ), WORK( * ), X( * ),
|
|
* $ XACT( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CCHKGB tests CGBTRF, -TRS, -RFS, and -CON
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> The matrix types to be used for testing. Matrices of type j
|
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NM
|
|
*> \verbatim
|
|
*> NM is INTEGER
|
|
*> The number of values of M contained in the vector MVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MVAL
|
|
*> \verbatim
|
|
*> MVAL is INTEGER array, dimension (NM)
|
|
*> The values of the matrix row dimension M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NN
|
|
*> \verbatim
|
|
*> NN is INTEGER
|
|
*> The number of values of N contained in the vector NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (NN)
|
|
*> The values of the matrix column dimension N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NNB
|
|
*> \verbatim
|
|
*> NNB is INTEGER
|
|
*> The number of values of NB contained in the vector NBVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NBVAL
|
|
*> \verbatim
|
|
*> NBVAL is INTEGER array, dimension (NNB)
|
|
*> The values of the blocksize NB.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NNS
|
|
*> \verbatim
|
|
*> NNS is INTEGER
|
|
*> The number of values of NRHS contained in the vector NSVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NSVAL
|
|
*> \verbatim
|
|
*> NSVAL is INTEGER array, dimension (NNS)
|
|
*> The values of the number of right hand sides NRHS.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is REAL
|
|
*> The threshold value for the test ratios. A result is
|
|
*> included in the output file if RESULT >= THRESH. To have
|
|
*> every test ratio printed, use THRESH = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TSTERR
|
|
*> \verbatim
|
|
*> TSTERR is LOGICAL
|
|
*> Flag that indicates whether error exits are to be tested.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LA)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LA
|
|
*> \verbatim
|
|
*> LA is INTEGER
|
|
*> The length of the array A. LA >= (KLMAX+KUMAX+1)*NMAX
|
|
*> where KLMAX is the largest entry in the local array KLVAL,
|
|
*> KUMAX is the largest entry in the local array KUVAL and
|
|
*> NMAX is the largest entry in the input array NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AFAC
|
|
*> \verbatim
|
|
*> AFAC is COMPLEX array, dimension (LAFAC)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LAFAC
|
|
*> \verbatim
|
|
*> LAFAC is INTEGER
|
|
*> The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX
|
|
*> where KLMAX is the largest entry in the local array KLVAL,
|
|
*> KUMAX is the largest entry in the local array KUVAL and
|
|
*> NMAX is the largest entry in the input array NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (NMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is COMPLEX array, dimension (NMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XACT
|
|
*> \verbatim
|
|
*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension
|
|
*> (NMAX*max(3,NSMAX,NMAX))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension
|
|
*> (NMAX+2*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The unit number for output.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS,
|
|
$ NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B,
|
|
$ X, XACT, WORK, RWORK, IWORK, NOUT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL TSTERR
|
|
INTEGER LA, LAFAC, NM, NN, NNB, NNS, NOUT
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
|
|
$ NVAL( * )
|
|
REAL RWORK( * )
|
|
COMPLEX A( * ), AFAC( * ), B( * ), WORK( * ), X( * ),
|
|
$ XACT( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
INTEGER NTYPES, NTESTS
|
|
PARAMETER ( NTYPES = 8, NTESTS = 7 )
|
|
INTEGER NBW, NTRAN
|
|
PARAMETER ( NBW = 4, NTRAN = 3 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL TRFCON, ZEROT
|
|
CHARACTER DIST, NORM, TRANS, TYPE, XTYPE
|
|
CHARACTER*3 PATH
|
|
INTEGER I, I1, I2, IKL, IKU, IM, IMAT, IN, INB, INFO,
|
|
$ IOFF, IRHS, ITRAN, IZERO, J, K, KL, KOFF, KU,
|
|
$ LDA, LDAFAC, LDB, M, MODE, N, NB, NERRS, NFAIL,
|
|
$ NIMAT, NKL, NKU, NRHS, NRUN
|
|
REAL AINVNM, ANORM, ANORMI, ANORMO, CNDNUM, RCOND,
|
|
$ RCONDC, RCONDI, RCONDO
|
|
* ..
|
|
* .. Local Arrays ..
|
|
CHARACTER TRANSS( NTRAN )
|
|
INTEGER ISEED( 4 ), ISEEDY( 4 ), KLVAL( NBW ),
|
|
$ KUVAL( NBW )
|
|
REAL RESULT( NTESTS )
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL CLANGB, CLANGE, SGET06
|
|
EXTERNAL CLANGB, CLANGE, SGET06
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALAERH, ALAHD, ALASUM, CCOPY, CERRGE, CGBCON,
|
|
$ CGBRFS, CGBT01, CGBT02, CGBT05, CGBTRF, CGBTRS,
|
|
$ CGET04, CLACPY, CLARHS, CLASET, CLATB4, CLATMS,
|
|
$ XLAENV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC CMPLX, MAX, MIN
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
LOGICAL LERR, OK
|
|
CHARACTER*32 SRNAMT
|
|
INTEGER INFOT, NUNIT
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
|
COMMON / SRNAMC / SRNAMT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA ISEEDY / 1988, 1989, 1990, 1991 / ,
|
|
$ TRANSS / 'N', 'T', 'C' /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Initialize constants and the random number seed.
|
|
*
|
|
PATH( 1: 1 ) = 'Complex precision'
|
|
PATH( 2: 3 ) = 'GB'
|
|
NRUN = 0
|
|
NFAIL = 0
|
|
NERRS = 0
|
|
DO 10 I = 1, 4
|
|
ISEED( I ) = ISEEDY( I )
|
|
10 CONTINUE
|
|
*
|
|
* Test the error exits
|
|
*
|
|
IF( TSTERR )
|
|
$ CALL CERRGE( PATH, NOUT )
|
|
INFOT = 0
|
|
*
|
|
* Initialize the first value for the lower and upper bandwidths.
|
|
*
|
|
KLVAL( 1 ) = 0
|
|
KUVAL( 1 ) = 0
|
|
*
|
|
* Do for each value of M in MVAL
|
|
*
|
|
DO 160 IM = 1, NM
|
|
M = MVAL( IM )
|
|
*
|
|
* Set values to use for the lower bandwidth.
|
|
*
|
|
KLVAL( 2 ) = M + ( M+1 ) / 4
|
|
*
|
|
* KLVAL( 2 ) = MAX( M-1, 0 )
|
|
*
|
|
KLVAL( 3 ) = ( 3*M-1 ) / 4
|
|
KLVAL( 4 ) = ( M+1 ) / 4
|
|
*
|
|
* Do for each value of N in NVAL
|
|
*
|
|
DO 150 IN = 1, NN
|
|
N = NVAL( IN )
|
|
XTYPE = 'N'
|
|
*
|
|
* Set values to use for the upper bandwidth.
|
|
*
|
|
KUVAL( 2 ) = N + ( N+1 ) / 4
|
|
*
|
|
* KUVAL( 2 ) = MAX( N-1, 0 )
|
|
*
|
|
KUVAL( 3 ) = ( 3*N-1 ) / 4
|
|
KUVAL( 4 ) = ( N+1 ) / 4
|
|
*
|
|
* Set limits on the number of loop iterations.
|
|
*
|
|
NKL = MIN( M+1, 4 )
|
|
IF( N.EQ.0 )
|
|
$ NKL = 2
|
|
NKU = MIN( N+1, 4 )
|
|
IF( M.EQ.0 )
|
|
$ NKU = 2
|
|
NIMAT = NTYPES
|
|
IF( M.LE.0 .OR. N.LE.0 )
|
|
$ NIMAT = 1
|
|
*
|
|
DO 140 IKL = 1, NKL
|
|
*
|
|
* Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This
|
|
* order makes it easier to skip redundant values for small
|
|
* values of M.
|
|
*
|
|
KL = KLVAL( IKL )
|
|
DO 130 IKU = 1, NKU
|
|
*
|
|
* Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This
|
|
* order makes it easier to skip redundant values for
|
|
* small values of N.
|
|
*
|
|
KU = KUVAL( IKU )
|
|
*
|
|
* Check that A and AFAC are big enough to generate this
|
|
* matrix.
|
|
*
|
|
LDA = KL + KU + 1
|
|
LDAFAC = 2*KL + KU + 1
|
|
IF( ( LDA*N ).GT.LA .OR. ( LDAFAC*N ).GT.LAFAC ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
IF( N*( KL+KU+1 ).GT.LA ) THEN
|
|
WRITE( NOUT, FMT = 9999 )LA, M, N, KL, KU,
|
|
$ N*( KL+KU+1 )
|
|
NERRS = NERRS + 1
|
|
END IF
|
|
IF( N*( 2*KL+KU+1 ).GT.LAFAC ) THEN
|
|
WRITE( NOUT, FMT = 9998 )LAFAC, M, N, KL, KU,
|
|
$ N*( 2*KL+KU+1 )
|
|
NERRS = NERRS + 1
|
|
END IF
|
|
GO TO 130
|
|
END IF
|
|
*
|
|
DO 120 IMAT = 1, NIMAT
|
|
*
|
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
|
*
|
|
IF( .NOT.DOTYPE( IMAT ) )
|
|
$ GO TO 120
|
|
*
|
|
* Skip types 2, 3, or 4 if the matrix size is too
|
|
* small.
|
|
*
|
|
ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
|
|
IF( ZEROT .AND. N.LT.IMAT-1 )
|
|
$ GO TO 120
|
|
*
|
|
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
|
|
*
|
|
* Set up parameters with CLATB4 and generate a
|
|
* test matrix with CLATMS.
|
|
*
|
|
CALL CLATB4( PATH, IMAT, M, N, TYPE, KL, KU,
|
|
$ ANORM, MODE, CNDNUM, DIST )
|
|
*
|
|
KOFF = MAX( 1, KU+2-N )
|
|
DO 20 I = 1, KOFF - 1
|
|
A( I ) = ZERO
|
|
20 CONTINUE
|
|
SRNAMT = 'CLATMS'
|
|
CALL CLATMS( M, N, DIST, ISEED, TYPE, RWORK,
|
|
$ MODE, CNDNUM, ANORM, KL, KU, 'Z',
|
|
$ A( KOFF ), LDA, WORK, INFO )
|
|
*
|
|
* Check the error code from CLATMS.
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', M,
|
|
$ N, KL, KU, -1, IMAT, NFAIL,
|
|
$ NERRS, NOUT )
|
|
GO TO 120
|
|
END IF
|
|
ELSE IF( IZERO.GT.0 ) THEN
|
|
*
|
|
* Use the same matrix for types 3 and 4 as for
|
|
* type 2 by copying back the zeroed out column.
|
|
*
|
|
CALL CCOPY( I2-I1+1, B, 1, A( IOFF+I1 ), 1 )
|
|
END IF
|
|
*
|
|
* For types 2, 3, and 4, zero one or more columns of
|
|
* the matrix to test that INFO is returned correctly.
|
|
*
|
|
IZERO = 0
|
|
IF( ZEROT ) THEN
|
|
IF( IMAT.EQ.2 ) THEN
|
|
IZERO = 1
|
|
ELSE IF( IMAT.EQ.3 ) THEN
|
|
IZERO = MIN( M, N )
|
|
ELSE
|
|
IZERO = MIN( M, N ) / 2 + 1
|
|
END IF
|
|
IOFF = ( IZERO-1 )*LDA
|
|
IF( IMAT.LT.4 ) THEN
|
|
*
|
|
* Store the column to be zeroed out in B.
|
|
*
|
|
I1 = MAX( 1, KU+2-IZERO )
|
|
I2 = MIN( KL+KU+1, KU+1+( M-IZERO ) )
|
|
CALL CCOPY( I2-I1+1, A( IOFF+I1 ), 1, B, 1 )
|
|
*
|
|
DO 30 I = I1, I2
|
|
A( IOFF+I ) = ZERO
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 50 J = IZERO, N
|
|
DO 40 I = MAX( 1, KU+2-J ),
|
|
$ MIN( KL+KU+1, KU+1+( M-J ) )
|
|
A( IOFF+I ) = ZERO
|
|
40 CONTINUE
|
|
IOFF = IOFF + LDA
|
|
50 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* These lines, if used in place of the calls in the
|
|
* loop over INB, cause the code to bomb on a Sun
|
|
* SPARCstation.
|
|
*
|
|
* ANORMO = CLANGB( 'O', N, KL, KU, A, LDA, RWORK )
|
|
* ANORMI = CLANGB( 'I', N, KL, KU, A, LDA, RWORK )
|
|
*
|
|
* Do for each blocksize in NBVAL
|
|
*
|
|
DO 110 INB = 1, NNB
|
|
NB = NBVAL( INB )
|
|
CALL XLAENV( 1, NB )
|
|
*
|
|
* Compute the LU factorization of the band matrix.
|
|
*
|
|
IF( M.GT.0 .AND. N.GT.0 )
|
|
$ CALL CLACPY( 'Full', KL+KU+1, N, A, LDA,
|
|
$ AFAC( KL+1 ), LDAFAC )
|
|
SRNAMT = 'CGBTRF'
|
|
CALL CGBTRF( M, N, KL, KU, AFAC, LDAFAC, IWORK,
|
|
$ INFO )
|
|
*
|
|
* Check error code from CGBTRF.
|
|
*
|
|
IF( INFO.NE.IZERO )
|
|
$ CALL ALAERH( PATH, 'CGBTRF', INFO, IZERO,
|
|
$ ' ', M, N, KL, KU, NB, IMAT,
|
|
$ NFAIL, NERRS, NOUT )
|
|
TRFCON = .FALSE.
|
|
*
|
|
*+ TEST 1
|
|
* Reconstruct matrix from factors and compute
|
|
* residual.
|
|
*
|
|
CALL CGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC,
|
|
$ IWORK, WORK, RESULT( 1 ) )
|
|
*
|
|
* Print information about the tests so far that
|
|
* did not pass the threshold.
|
|
*
|
|
IF( RESULT( 1 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9997 )M, N, KL, KU, NB,
|
|
$ IMAT, 1, RESULT( 1 )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
NRUN = NRUN + 1
|
|
*
|
|
* Skip the remaining tests if this is not the
|
|
* first block size or if M .ne. N.
|
|
*
|
|
IF( INB.GT.1 .OR. M.NE.N )
|
|
$ GO TO 110
|
|
*
|
|
ANORMO = CLANGB( 'O', N, KL, KU, A, LDA, RWORK )
|
|
ANORMI = CLANGB( 'I', N, KL, KU, A, LDA, RWORK )
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
*
|
|
* Form the inverse of A so we can get a good
|
|
* estimate of CNDNUM = norm(A) * norm(inv(A)).
|
|
*
|
|
LDB = MAX( 1, N )
|
|
CALL CLASET( 'Full', N, N, CMPLX( ZERO ),
|
|
$ CMPLX( ONE ), WORK, LDB )
|
|
SRNAMT = 'CGBTRS'
|
|
CALL CGBTRS( 'No transpose', N, KL, KU, N,
|
|
$ AFAC, LDAFAC, IWORK, WORK, LDB,
|
|
$ INFO )
|
|
*
|
|
* Compute the 1-norm condition number of A.
|
|
*
|
|
AINVNM = CLANGE( 'O', N, N, WORK, LDB,
|
|
$ RWORK )
|
|
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
|
RCONDO = ONE
|
|
ELSE
|
|
RCONDO = ( ONE / ANORMO ) / AINVNM
|
|
END IF
|
|
*
|
|
* Compute the infinity-norm condition number of
|
|
* A.
|
|
*
|
|
AINVNM = CLANGE( 'I', N, N, WORK, LDB,
|
|
$ RWORK )
|
|
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
|
RCONDI = ONE
|
|
ELSE
|
|
RCONDI = ( ONE / ANORMI ) / AINVNM
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Do only the condition estimate if INFO.NE.0.
|
|
*
|
|
TRFCON = .TRUE.
|
|
RCONDO = ZERO
|
|
RCONDI = ZERO
|
|
END IF
|
|
*
|
|
* Skip the solve tests if the matrix is singular.
|
|
*
|
|
IF( TRFCON )
|
|
$ GO TO 90
|
|
*
|
|
DO 80 IRHS = 1, NNS
|
|
NRHS = NSVAL( IRHS )
|
|
XTYPE = 'N'
|
|
*
|
|
DO 70 ITRAN = 1, NTRAN
|
|
TRANS = TRANSS( ITRAN )
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
RCONDC = RCONDO
|
|
NORM = 'O'
|
|
ELSE
|
|
RCONDC = RCONDI
|
|
NORM = 'I'
|
|
END IF
|
|
*
|
|
*+ TEST 2:
|
|
* Solve and compute residual for op(A) * X = B.
|
|
*
|
|
SRNAMT = 'CLARHS'
|
|
CALL CLARHS( PATH, XTYPE, ' ', TRANS, N,
|
|
$ N, KL, KU, NRHS, A, LDA,
|
|
$ XACT, LDB, B, LDB, ISEED,
|
|
$ INFO )
|
|
XTYPE = 'C'
|
|
CALL CLACPY( 'Full', N, NRHS, B, LDB, X,
|
|
$ LDB )
|
|
*
|
|
SRNAMT = 'CGBTRS'
|
|
CALL CGBTRS( TRANS, N, KL, KU, NRHS, AFAC,
|
|
$ LDAFAC, IWORK, X, LDB, INFO )
|
|
*
|
|
* Check error code from CGBTRS.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'CGBTRS', INFO, 0,
|
|
$ TRANS, N, N, KL, KU, -1,
|
|
$ IMAT, NFAIL, NERRS, NOUT )
|
|
*
|
|
CALL CLACPY( 'Full', N, NRHS, B, LDB,
|
|
$ WORK, LDB )
|
|
CALL CGBT02( TRANS, M, N, KL, KU, NRHS, A,
|
|
$ LDA, X, LDB, WORK, LDB,
|
|
$ RWORK, RESULT( 2 ) )
|
|
*
|
|
*+ TEST 3:
|
|
* Check solution from generated exact
|
|
* solution.
|
|
*
|
|
CALL CGET04( N, NRHS, X, LDB, XACT, LDB,
|
|
$ RCONDC, RESULT( 3 ) )
|
|
*
|
|
*+ TESTS 4, 5, 6:
|
|
* Use iterative refinement to improve the
|
|
* solution.
|
|
*
|
|
SRNAMT = 'CGBRFS'
|
|
CALL CGBRFS( TRANS, N, KL, KU, NRHS, A,
|
|
$ LDA, AFAC, LDAFAC, IWORK, B,
|
|
$ LDB, X, LDB, RWORK,
|
|
$ RWORK( NRHS+1 ), WORK,
|
|
$ RWORK( 2*NRHS+1 ), INFO )
|
|
*
|
|
* Check error code from CGBRFS.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'CGBRFS', INFO, 0,
|
|
$ TRANS, N, N, KL, KU, NRHS,
|
|
$ IMAT, NFAIL, NERRS, NOUT )
|
|
*
|
|
CALL CGET04( N, NRHS, X, LDB, XACT, LDB,
|
|
$ RCONDC, RESULT( 4 ) )
|
|
CALL CGBT05( TRANS, N, KL, KU, NRHS, A,
|
|
$ LDA, B, LDB, X, LDB, XACT,
|
|
$ LDB, RWORK, RWORK( NRHS+1 ),
|
|
$ RESULT( 5 ) )
|
|
*
|
|
* Print information about the tests that did
|
|
* not pass the threshold.
|
|
*
|
|
DO 60 K = 2, 6
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9996 )TRANS, N,
|
|
$ KL, KU, NRHS, IMAT, K,
|
|
$ RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
60 CONTINUE
|
|
NRUN = NRUN + 5
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
*
|
|
*+ TEST 7:
|
|
* Get an estimate of RCOND = 1/CNDNUM.
|
|
*
|
|
90 CONTINUE
|
|
DO 100 ITRAN = 1, 2
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
ANORM = ANORMO
|
|
RCONDC = RCONDO
|
|
NORM = 'O'
|
|
ELSE
|
|
ANORM = ANORMI
|
|
RCONDC = RCONDI
|
|
NORM = 'I'
|
|
END IF
|
|
SRNAMT = 'CGBCON'
|
|
CALL CGBCON( NORM, N, KL, KU, AFAC, LDAFAC,
|
|
$ IWORK, ANORM, RCOND, WORK,
|
|
$ RWORK, INFO )
|
|
*
|
|
* Check error code from CGBCON.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'CGBCON', INFO, 0,
|
|
$ NORM, N, N, KL, KU, -1, IMAT,
|
|
$ NFAIL, NERRS, NOUT )
|
|
*
|
|
RESULT( 7 ) = SGET06( RCOND, RCONDC )
|
|
*
|
|
* Print information about the tests that did
|
|
* not pass the threshold.
|
|
*
|
|
IF( RESULT( 7 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9995 )NORM, N, KL, KU,
|
|
$ IMAT, 7, RESULT( 7 )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
NRUN = NRUN + 1
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
160 CONTINUE
|
|
*
|
|
* Print a summary of the results.
|
|
*
|
|
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
|
*
|
|
9999 FORMAT( ' *** In CCHKGB, LA=', I5, ' is too small for M=', I5,
|
|
$ ', N=', I5, ', KL=', I4, ', KU=', I4,
|
|
$ / ' ==> Increase LA to at least ', I5 )
|
|
9998 FORMAT( ' *** In CCHKGB, LAFAC=', I5, ' is too small for M=', I5,
|
|
$ ', N=', I5, ', KL=', I4, ', KU=', I4,
|
|
$ / ' ==> Increase LAFAC to at least ', I5 )
|
|
9997 FORMAT( ' M =', I5, ', N =', I5, ', KL=', I5, ', KU=', I5,
|
|
$ ', NB =', I4, ', type ', I1, ', test(', I1, ')=', G12.5 )
|
|
9996 FORMAT( ' TRANS=''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
|
|
$ ', NRHS=', I3, ', type ', I1, ', test(', I1, ')=', G12.5 )
|
|
9995 FORMAT( ' NORM =''', A1, ''', N=', I5, ', KL=', I5, ', KU=', I5,
|
|
$ ',', 10X, ' type ', I1, ', test(', I1, ')=', G12.5 )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CCHKGB
|
|
*
|
|
END
|
|
|