Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

534 lines
18 KiB

*> \brief \b CERRPOX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CERRPO( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CERRPO tests the error exits for the COMPLEX routines
*> for Hermitian positive definite matrices.
*>
*> Note that this file is used only when the XBLAS are available,
*> otherwise cerrpo.f defines this subroutine.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CERRPO( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER EQ
CHARACTER*2 C2
INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
REAL ANRM, RCOND, BERR
* ..
* .. Local Arrays ..
REAL S( NMAX ), R( NMAX ), R1( NMAX ), R2( NMAX ),
$ ERR_BNDS_N( NMAX, 3 ), ERR_BNDS_C( NMAX, 3 ),
$ PARAMS( 1 )
COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ W( 2*NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, CPBCON, CPBEQU, CPBRFS, CPBTF2,
$ CPBTRF, CPBTRS, CPOCON, CPOEQU, CPORFS, CPOTF2,
$ CPOTRF, CPOTRI, CPOTRS, CPPCON, CPPEQU, CPPRFS,
$ CPPTRF, CPPTRI, CPPTRS, CPOEQUB, CPORFSX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, REAL
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) )
AF( I, J ) = CMPLX( 1. / REAL( I+J ), -1. / REAL( I+J ) )
10 CONTINUE
B( J ) = 0.
R1( J ) = 0.
R2( J ) = 0.
W( J ) = 0.
X( J ) = 0.
S( J ) = 0.
20 CONTINUE
ANRM = 1.
OK = .TRUE.
*
* Test error exits of the routines that use the Cholesky
* decomposition of a Hermitian positive definite matrix.
*
IF( LSAMEN( 2, C2, 'PO' ) ) THEN
*
* CPOTRF
*
SRNAMT = 'CPOTRF'
INFOT = 1
CALL CPOTRF( '/', 0, A, 1, INFO )
CALL CHKXER( 'CPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPOTRF( 'U', -1, A, 1, INFO )
CALL CHKXER( 'CPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPOTRF( 'U', 2, A, 1, INFO )
CALL CHKXER( 'CPOTRF', INFOT, NOUT, LERR, OK )
*
* CPOTF2
*
SRNAMT = 'CPOTF2'
INFOT = 1
CALL CPOTF2( '/', 0, A, 1, INFO )
CALL CHKXER( 'CPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPOTF2( 'U', -1, A, 1, INFO )
CALL CHKXER( 'CPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPOTF2( 'U', 2, A, 1, INFO )
CALL CHKXER( 'CPOTF2', INFOT, NOUT, LERR, OK )
*
* CPOTRI
*
SRNAMT = 'CPOTRI'
INFOT = 1
CALL CPOTRI( '/', 0, A, 1, INFO )
CALL CHKXER( 'CPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPOTRI( 'U', -1, A, 1, INFO )
CALL CHKXER( 'CPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPOTRI( 'U', 2, A, 1, INFO )
CALL CHKXER( 'CPOTRI', INFOT, NOUT, LERR, OK )
*
* CPOTRS
*
SRNAMT = 'CPOTRS'
INFOT = 1
CALL CPOTRS( '/', 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPOTRS( 'U', -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPOTRS( 'U', 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CPOTRS( 'U', 2, 1, A, 1, B, 2, INFO )
CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CPOTRS( 'U', 2, 1, A, 2, B, 1, INFO )
CALL CHKXER( 'CPOTRS', INFOT, NOUT, LERR, OK )
*
* CPORFS
*
SRNAMT = 'CPORFS'
INFOT = 1
CALL CPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPORFS', INFOT, NOUT, LERR, OK )
*
* CPORFSX
*
N_ERR_BNDS = 3
NPARAMS = 0
SRNAMT = 'CPORFSX'
INFOT = 1
CALL CPORFSX( '/', EQ, 0, 0, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPORFSX( 'U', '/', -1, 0, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
EQ = 'N'
INFOT = 3
CALL CPORFSX( 'U', EQ, -1, 0, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPORFSX( 'U', EQ, 0, -1, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CPORFSX( 'U', EQ, 2, 1, A, 1, AF, 2, S, B, 2, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CPORFSX( 'U', EQ, 2, 1, A, 2, AF, 1, S, B, 2, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL CPORFSX( 'U', EQ, 2, 1, A, 2, AF, 2, S, B, 1, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 13
CALL CPORFSX( 'U', EQ, 2, 1, A, 2, AF, 2, S, B, 2, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, R, INFO )
CALL CHKXER( 'CPORFSX', INFOT, NOUT, LERR, OK )
*
* CPOCON
*
SRNAMT = 'CPOCON'
INFOT = 1
CALL CPOCON( '/', 0, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPOCON( 'U', -1, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPOCON( 'U', 2, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CPOCON( 'U', 1, A, 1, -ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPOCON', INFOT, NOUT, LERR, OK )
*
* CPOEQU
*
SRNAMT = 'CPOEQU'
INFOT = 1
CALL CPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPOEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPOEQU', INFOT, NOUT, LERR, OK )
*
* CPOEQUB
*
SRNAMT = 'CPOEQUB'
INFOT = 1
CALL CPOEQUB( -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPOEQUB', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPOEQUB( 2, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPOEQUB', INFOT, NOUT, LERR, OK )
*
* Test error exits of the routines that use the Cholesky
* decomposition of a Hermitian positive definite packed matrix.
*
ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN
*
* CPPTRF
*
SRNAMT = 'CPPTRF'
INFOT = 1
CALL CPPTRF( '/', 0, A, INFO )
CALL CHKXER( 'CPPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPPTRF( 'U', -1, A, INFO )
CALL CHKXER( 'CPPTRF', INFOT, NOUT, LERR, OK )
*
* CPPTRI
*
SRNAMT = 'CPPTRI'
INFOT = 1
CALL CPPTRI( '/', 0, A, INFO )
CALL CHKXER( 'CPPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPPTRI( 'U', -1, A, INFO )
CALL CHKXER( 'CPPTRI', INFOT, NOUT, LERR, OK )
*
* CPPTRS
*
SRNAMT = 'CPPTRS'
INFOT = 1
CALL CPPTRS( '/', 0, 0, A, B, 1, INFO )
CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPPTRS( 'U', -1, 0, A, B, 1, INFO )
CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPPTRS( 'U', 0, -1, A, B, 1, INFO )
CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CPPTRS( 'U', 2, 1, A, B, 1, INFO )
CALL CHKXER( 'CPPTRS', INFOT, NOUT, LERR, OK )
*
* CPPRFS
*
SRNAMT = 'CPPRFS'
INFOT = 1
CALL CPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, R, INFO )
CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL CPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, R, INFO )
CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL CPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, R, INFO )
CALL CHKXER( 'CPPRFS', INFOT, NOUT, LERR, OK )
*
* CPPCON
*
SRNAMT = 'CPPCON'
INFOT = 1
CALL CPPCON( '/', 0, A, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPPCON( 'U', -1, A, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPPCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPPCON( 'U', 1, A, -ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPPCON', INFOT, NOUT, LERR, OK )
*
* CPPEQU
*
SRNAMT = 'CPPEQU'
INFOT = 1
CALL CPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPPEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPPEQU', INFOT, NOUT, LERR, OK )
*
* Test error exits of the routines that use the Cholesky
* decomposition of a Hermitian positive definite band matrix.
*
ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
* CPBTRF
*
SRNAMT = 'CPBTRF'
INFOT = 1
CALL CPBTRF( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPBTRF( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPBTRF( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CPBTRF( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'CPBTRF', INFOT, NOUT, LERR, OK )
*
* CPBTF2
*
SRNAMT = 'CPBTF2'
INFOT = 1
CALL CPBTF2( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPBTF2( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPBTF2( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CPBTF2( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'CPBTF2', INFOT, NOUT, LERR, OK )
*
* CPBTRS
*
SRNAMT = 'CPBTRS'
INFOT = 1
CALL CPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'CPBTRS', INFOT, NOUT, LERR, OK )
*
* CPBRFS
*
SRNAMT = 'CPBRFS'
INFOT = 1
CALL CPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL CPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL CPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL CPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL CPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'CPBRFS', INFOT, NOUT, LERR, OK )
*
* CPBCON
*
SRNAMT = 'CPBCON'
INFOT = 1
CALL CPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL CPBCON( 'U', 1, 0, A, 1, -ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'CPBCON', INFOT, NOUT, LERR, OK )
*
* CPBEQU
*
SRNAMT = 'CPBEQU'
INFOT = 1
CALL CPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL CPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL CPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL CPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'CPBEQU', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of CERRPOX
*
END