Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

556 lines
17 KiB

*> \brief \b CLAVHP
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAVHP performs one of the matrix-vector operations
*> x := A*x or x := A^H*x,
*> where x is an N element vector and A is one of the factors
*> from the symmetric factorization computed by CHPTRF.
*> CHPTRF produces a factorization of the form
*> U * D * U^H or L * D * L^H,
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, U^H (or L^H) is the conjugate transpose of
*> U (or L), and D is Hermitian and block diagonal with 1 x 1 and
*> 2 x 2 diagonal blocks. The multipliers for the transformations
*> and the upper or lower triangular parts of the diagonal blocks
*> are stored columnwise in packed format in the linear array A.
*>
*> If TRANS = 'N' or 'n', CLAVHP multiplies either by U or U * D
*> (or L or L * D).
*> If TRANS = 'C' or 'c', CLAVHP multiplies either by U^H or D * U^H
*> (or L^H or D * L^H ).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> UPLO - CHARACTER*1
*> On entry, UPLO specifies whether the triangular matrix
*> stored in A is upper or lower triangular.
*> UPLO = 'U' or 'u' The matrix is upper triangular.
*> UPLO = 'L' or 'l' The matrix is lower triangular.
*> Unchanged on exit.
*>
*> TRANS - CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*> TRANS = 'N' or 'n' x := A*x.
*> TRANS = 'C' or 'c' x := A^H*x.
*> Unchanged on exit.
*>
*> DIAG - CHARACTER*1
*> On entry, DIAG specifies whether the diagonal blocks are
*> assumed to be unit matrices, as follows:
*> DIAG = 'U' or 'u' Diagonal blocks are unit matrices.
*> DIAG = 'N' or 'n' Diagonal blocks are non-unit.
*> Unchanged on exit.
*>
*> N - INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> Unchanged on exit.
*>
*> NRHS - INTEGER
*> On entry, NRHS specifies the number of right hand sides,
*> i.e., the number of vectors x to be multiplied by A.
*> NRHS must be at least zero.
*> Unchanged on exit.
*>
*> A - COMPLEX array, dimension( N*(N+1)/2 )
*> On entry, A contains a block diagonal matrix and the
*> multipliers of the transformations used to obtain it,
*> stored as a packed triangular matrix.
*> Unchanged on exit.
*>
*> IPIV - INTEGER array, dimension( N )
*> On entry, IPIV contains the vector of pivot indices as
*> determined by CSPTRF or CHPTRF.
*> If IPIV( K ) = K, no interchange was done.
*> If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
*> changed with row IPIV( K ) and a 1 x 1 pivot block was used.
*> If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
*> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
*> If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
*> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
*>
*> B - COMPLEX array, dimension( LDB, NRHS )
*> On entry, B contains NRHS vectors of length N.
*> On exit, B is overwritten with the product A * B.
*>
*> LDB - INTEGER
*> On entry, LDB contains the leading dimension of B as
*> declared in the calling program. LDB must be at least
*> max( 1, N ).
*> Unchanged on exit.
*>
*> INFO - INTEGER
*> INFO is the error flag.
*> On exit, a value of 0 indicates a successful exit.
*> A negative value, say -K, indicates that the K-th argument
*> has an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CLAVHP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
$ INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT
INTEGER J, K, KC, KCNEXT, KP
COMPLEX D11, D12, D21, D22, T1, T2
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CGERU, CLACGV, CSCAL, CSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
$ THEN
INFO = -2
ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
$ THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAVHP ', -INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 )
$ RETURN
*
NOUNIT = LSAME( DIAG, 'N' )
*------------------------------------------
*
* Compute B := A * B (No transpose)
*
*------------------------------------------
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Compute B := U*B
* where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Loop forward applying the transformations.
*
K = 1
KC = 1
10 CONTINUE
IF( K.GT.N )
$ GO TO 30
*
* 1 x 1 pivot block
*
IF( IPIV( K ).GT.0 ) THEN
*
* Multiply by the diagonal element if forming U * D.
*
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
*
* Multiply by P(K) * inv(U(K)) if K > 1.
*
IF( K.GT.1 ) THEN
*
* Apply the transformation.
*
CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
$ LDB, B( 1, 1 ), LDB )
*
* Interchange if P(K) != I.
*
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
KC = KC + K
K = K + 1
ELSE
*
* 2 x 2 pivot block
*
KCNEXT = KC + K
*
* Multiply by the diagonal block if forming U * D.
*
IF( NOUNIT ) THEN
D11 = A( KCNEXT-1 )
D22 = A( KCNEXT+K )
D12 = A( KCNEXT+K-1 )
D21 = CONJG( D12 )
DO 20 J = 1, NRHS
T1 = B( K, J )
T2 = B( K+1, J )
B( K, J ) = D11*T1 + D12*T2
B( K+1, J ) = D21*T1 + D22*T2
20 CONTINUE
END IF
*
* Multiply by P(K) * inv(U(K)) if K > 1.
*
IF( K.GT.1 ) THEN
*
* Apply the transformations.
*
CALL CGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
$ LDB, B( 1, 1 ), LDB )
CALL CGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
$ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
*
* Interchange if P(K) != I.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
KC = KCNEXT + K + 1
K = K + 2
END IF
GO TO 10
30 CONTINUE
*
* Compute B := L*B
* where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
*
ELSE
*
* Loop backward applying the transformations to B.
*
K = N
KC = N*( N+1 ) / 2 + 1
40 CONTINUE
IF( K.LT.1 )
$ GO TO 60
KC = KC - ( N-K+1 )
*
* Test the pivot index. If greater than zero, a 1 x 1
* pivot was used, otherwise a 2 x 2 pivot was used.
*
IF( IPIV( K ).GT.0 ) THEN
*
* 1 x 1 pivot block:
*
* Multiply by the diagonal element if forming L * D.
*
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
*
* Multiply by P(K) * inv(L(K)) if K < N.
*
IF( K.NE.N ) THEN
KP = IPIV( K )
*
* Apply the transformation.
*
CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
$ LDB, B( K+1, 1 ), LDB )
*
* Interchange if a permutation was applied at the
* K-th step of the factorization.
*
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
K = K - 1
*
ELSE
*
* 2 x 2 pivot block:
*
KCNEXT = KC - ( N-K+2 )
*
* Multiply by the diagonal block if forming L * D.
*
IF( NOUNIT ) THEN
D11 = A( KCNEXT )
D22 = A( KC )
D21 = A( KCNEXT+1 )
D12 = CONJG( D21 )
DO 50 J = 1, NRHS
T1 = B( K-1, J )
T2 = B( K, J )
B( K-1, J ) = D11*T1 + D12*T2
B( K, J ) = D21*T1 + D22*T2
50 CONTINUE
END IF
*
* Multiply by P(K) * inv(L(K)) if K < N.
*
IF( K.NE.N ) THEN
*
* Apply the transformation.
*
CALL CGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
$ LDB, B( K+1, 1 ), LDB )
CALL CGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
$ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
*
* Interchange if a permutation was applied at the
* K-th step of the factorization.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
KC = KCNEXT
K = K - 2
END IF
GO TO 40
60 CONTINUE
END IF
*-------------------------------------------------
*
* Compute B := A^H * B (conjugate transpose)
*
*-------------------------------------------------
ELSE
*
* Form B := U^H*B
* where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
* and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Loop backward applying the transformations.
*
K = N
KC = N*( N+1 ) / 2 + 1
70 IF( K.LT.1 )
$ GO TO 90
KC = KC - K
*
* 1 x 1 pivot block.
*
IF( IPIV( K ).GT.0 ) THEN
IF( K.GT.1 ) THEN
*
* Interchange if P(K) != I.
*
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
* Apply the transformation:
* y := y - B' * conjg(x)
* where x is a column of A and y is a row of B.
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', K-1, NRHS, ONE, B, LDB,
$ A( KC ), 1, ONE, B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
END IF
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
K = K - 1
*
* 2 x 2 pivot block.
*
ELSE
KCNEXT = KC - ( K-1 )
IF( K.GT.2 ) THEN
*
* Interchange if P(K) != I.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K-1 )
$ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
$ LDB )
*
* Apply the transformations.
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
$ A( KC ), 1, ONE, B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
*
CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
$ A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
END IF
*
* Multiply by the diagonal block if non-unit.
*
IF( NOUNIT ) THEN
D11 = A( KC-1 )
D22 = A( KC+K-1 )
D12 = A( KC+K-2 )
D21 = CONJG( D12 )
DO 80 J = 1, NRHS
T1 = B( K-1, J )
T2 = B( K, J )
B( K-1, J ) = D11*T1 + D12*T2
B( K, J ) = D21*T1 + D22*T2
80 CONTINUE
END IF
KC = KCNEXT
K = K - 2
END IF
GO TO 70
90 CONTINUE
*
* Form B := L^H*B
* where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
* and L^H = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
*
ELSE
*
* Loop forward applying the L-transformations.
*
K = 1
KC = 1
100 CONTINUE
IF( K.GT.N )
$ GO TO 120
*
* 1 x 1 pivot block
*
IF( IPIV( K ).GT.0 ) THEN
IF( K.LT.N ) THEN
*
* Interchange if P(K) != I.
*
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
* Apply the transformation
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', N-K, NRHS, ONE, B( K+1, 1 ),
$ LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
END IF
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
KC = KC + N - K + 1
K = K + 1
*
* 2 x 2 pivot block.
*
ELSE
KCNEXT = KC + N - K + 1
IF( K.LT.N-1 ) THEN
*
* Interchange if P(K) != I.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K+1 )
$ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
$ LDB )
*
* Apply the transformation
*
CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
$ B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
$ B( K+1, 1 ), LDB )
CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
$ B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
$ B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
END IF
*
* Multiply by the diagonal block if non-unit.
*
IF( NOUNIT ) THEN
D11 = A( KC )
D22 = A( KCNEXT )
D21 = A( KC+1 )
D12 = CONJG( D21 )
DO 110 J = 1, NRHS
T1 = B( K, J )
T2 = B( K+1, J )
B( K, J ) = D11*T1 + D12*T2
B( K+1, J ) = D21*T1 + D22*T2
110 CONTINUE
END IF
KC = KCNEXT + ( N-K )
K = K + 2
END IF
GO TO 100
120 CONTINUE
END IF
*
END IF
RETURN
*
* End of CLAVHP
*
END