Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

226 lines
5.7 KiB

*> \brief \b CQRT12
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
* RWORK )
*
* .. Scalar Arguments ..
* INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* REAL RWORK( * ), S( * )
* COMPLEX A( LDA, * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CQRT12 computes the singular values `svlues' of the upper trapezoid
*> of A(1:M,1:N) and returns the ratio
*>
*> || s - svlues||/(||svlues||*eps*max(M,N))
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The M-by-N matrix A. Only the upper trapezoid is referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is REAL array, dimension (min(M,N))
*> The singular values of the matrix A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= M*N + 2*min(M,N) +
*> max(M,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (4*min(M,N))
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
REAL FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
$ RWORK )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL RWORK( * ), S( * )
COMPLEX A( LDA, * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, ISCL, J, MN
REAL ANRM, BIGNUM, NRMSVL, SMLNUM
* ..
* .. Local Arrays ..
REAL DUMMY( 1 )
* ..
* .. External Functions ..
REAL CLANGE, SASUM, SLAMCH, SNRM2
EXTERNAL CLANGE, SASUM, SLAMCH, SNRM2
* ..
* .. External Subroutines ..
EXTERNAL CGEBD2, CLASCL, CLASET, SAXPY, SBDSQR, SLASCL,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
CQRT12 = ZERO
*
* Test that enough workspace is supplied
*
IF( LWORK.LT.M*N+2*MIN( M, N )+MAX( M, N ) ) THEN
CALL XERBLA( 'CQRT12', 7 )
RETURN
END IF
*
* Quick return if possible
*
MN = MIN( M, N )
IF( MN.LE.ZERO )
$ RETURN
*
NRMSVL = SNRM2( MN, S, 1 )
*
* Copy upper triangle of A into work
*
CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), WORK, M )
DO 20 J = 1, N
DO 10 I = 1, MIN( J, M )
WORK( ( J-1 )*M+I ) = A( I, J )
10 CONTINUE
20 CONTINUE
*
* Get machine parameters
*
SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
*
* Scale work if max entry outside range [SMLNUM,BIGNUM]
*
ANRM = CLANGE( 'M', M, N, WORK, M, DUMMY )
ISCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO )
ISCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO )
ISCL = 1
END IF
*
IF( ANRM.NE.ZERO ) THEN
*
* Compute SVD of work
*
CALL CGEBD2( M, N, WORK, M, RWORK( 1 ), RWORK( MN+1 ),
$ WORK( M*N+1 ), WORK( M*N+MN+1 ),
$ WORK( M*N+2*MN+1 ), INFO )
CALL SBDSQR( 'Upper', MN, 0, 0, 0, RWORK( 1 ), RWORK( MN+1 ),
$ DUMMY, MN, DUMMY, 1, DUMMY, MN, RWORK( 2*MN+1 ),
$ INFO )
*
IF( ISCL.EQ.1 ) THEN
IF( ANRM.GT.BIGNUM ) THEN
CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1, RWORK( 1 ),
$ MN, INFO )
END IF
IF( ANRM.LT.SMLNUM ) THEN
CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1, RWORK( 1 ),
$ MN, INFO )
END IF
END IF
*
ELSE
*
DO 30 I = 1, MN
RWORK( I ) = ZERO
30 CONTINUE
END IF
*
* Compare s and singular values of work
*
CALL SAXPY( MN, -ONE, S, 1, RWORK( 1 ), 1 )
CQRT12 = SASUM( MN, RWORK( 1 ), 1 ) /
$ ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
IF( NRMSVL.NE.ZERO )
$ CQRT12 = CQRT12 / NRMSVL
*
RETURN
*
* End of CQRT12
*
END