Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

562 lines
17 KiB

*> \brief \b DCHKSY_AA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DCHKSY_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
* THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
* XACT, WORK, RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NMAX, NN, NNB, NNS, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
* DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
* $ RWORK( * ), WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCHKSY_AA tests DSYTRF_AA, -TRS_AA.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB contained in the vector NBVAL.
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NNB)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*> AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*> where NSMAX is the largest entry in NSVAL.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DCHKSY_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
$ THRESH, TSTERR, NMAX, A, AFAC, AINV, B,
$ X, XACT, WORK, RWORK, IWORK, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
IMPLICIT NONE
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NN, NNB, NNS, NMAX, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
$ RWORK( * ), WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 10 )
INTEGER NTESTS
PARAMETER ( NTESTS = 9 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
CHARACTER DIST, TYPE, UPLO, XTYPE
CHARACTER*3 PATH, MATPATH
INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
$ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
$ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
DOUBLE PRECISION ANORM, CNDNUM
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASUM, DERRSY, DLACPY, DLARHS,
$ DLATB4, DLATMS, DPOT02, DSYT01_AA, DSYTRF_AA,
$ DSYTRS_AA, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
* Test path
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'SA'
*
* Path to generate matrices
*
MATPATH( 1: 1 ) = 'Double precision'
MATPATH( 2: 3 ) = 'SY'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL DERRSY( PATH, NOUT )
INFOT = 0
*
* Set the minimum block size for which the block routine should
* be used, which will be later returned by ILAENV
*
CALL XLAENV( 2, 2 )
*
* Do for each value of N in NVAL
*
DO 180 IN = 1, NN
N = NVAL( IN )
IF( N .GT. NMAX ) THEN
NFAIL = NFAIL + 1
WRITE(NOUT, 9995) 'M ', N, NMAX
GO TO 180
END IF
LDA = MAX( N, 1 )
XTYPE = 'N'
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
IZERO = 0
*
* Do for each value of matrix type IMAT
*
DO 170 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 170
*
* Skip types 3, 4, 5, or 6 if the matrix size is too small.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
IF( ZEROT .AND. N.LT.IMAT-2 )
$ GO TO 170
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 160 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
* Begin generate the test matrix A.
*
*
* Set up parameters with DLATB4 for the matrix generator
* based on the type of matrix to be generated.
*
CALL DLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU,
$ ANORM, MODE, CNDNUM, DIST )
*
* Generate a matrix with DLATMS.
*
SRNAMT = 'DLATMS'
CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
$ INFO )
*
* Check error code from DLATMS and handle error.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'DLATMS', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
*
* Skip all tests for this generated matrix
*
GO TO 160
END IF
*
* For matrix types 3-6, zero one or more rows and
* columns of the matrix to test that INFO is returned
* correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
*
IF( IMAT.LT.6 ) THEN
*
* Set row and column IZERO to zero.
*
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*LDA
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = ZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = ZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = ZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = ZERO
50 CONTINUE
END IF
ELSE
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
IOFF = 0
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
A( IOFF+I ) = ZERO
60 CONTINUE
IOFF = IOFF + LDA
70 CONTINUE
IZERO = 1
ELSE
*
* Set the last IZERO rows and columns to zero.
*
IOFF = 0
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
A( IOFF+I ) = ZERO
80 CONTINUE
IOFF = IOFF + LDA
90 CONTINUE
END IF
END IF
ELSE
IZERO = 0
END IF
*
* End generate the test matrix A.
*
* Do for each value of NB in NBVAL
*
DO 150 INB = 1, NNB
*
* Set the optimal blocksize, which will be later
* returned by ILAENV.
*
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
* Copy the test matrix A into matrix AFAC which
* will be factorized in place. This is needed to
* preserve the test matrix A for subsequent tests.
*
CALL DLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
*
* Compute the L*D*L**T or U*D*U**T factorization of the
* matrix. IWORK stores details of the interchanges and
* the block structure of D. AINV is a work array for
* block factorization, LWORK is the length of AINV.
*
SRNAMT = 'DSYTRF_AA'
LWORK = MAX( 1, N*NB + N )
CALL DSYTRF_AA( UPLO, N, AFAC, LDA, IWORK, AINV,
$ LWORK, INFO )
*
* Adjust the expected value of INFO to account for
* pivoting.
*
c IF( IZERO.GT.0 ) THEN
c J = 1
c K = IZERO
c 100 CONTINUE
c IF( J.EQ.K ) THEN
c K = IWORK( J )
c ELSE IF( IWORK( J ).EQ.K ) THEN
c K = J
c END IF
c IF( J.LT.K ) THEN
c J = J + 1
c GO TO 100
c END IF
c ELSE
K = 0
c END IF
*
* Check error code from DSYTRF and handle error.
*
IF( INFO.NE.K ) THEN
CALL ALAERH( PATH, 'DSYTRF_AA', INFO, K, UPLO,
$ N, N, -1, -1, NB, IMAT, NFAIL, NERRS,
$ NOUT )
END IF
*
*+ TEST 1
* Reconstruct matrix from factors and compute residual.
*
CALL DSYT01_AA( UPLO, N, A, LDA, AFAC, LDA, IWORK,
$ AINV, LDA, RWORK, RESULT( 1 ) )
NT = 1
*
*
* Print information about the tests that did not pass
* the threshold.
*
DO 110 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
110 CONTINUE
NRUN = NRUN + NT
*
* Skip solver test if INFO is not 0.
*
IF( INFO.NE.0 ) THEN
GO TO 140
END IF
*
* Do for each value of NRHS in NSVAL.
*
DO 130 IRHS = 1, NNS
NRHS = NSVAL( IRHS )
*
*+ TEST 2 (Using TRS)
* Solve and compute residual for A * X = B.
*
* Choose a set of NRHS random solution vectors
* stored in XACT and set up the right hand side B
*
SRNAMT = 'DLARHS'
CALL DLARHS( MATPATH, XTYPE, UPLO, ' ', N, N,
$ KL, KU, NRHS, A, LDA, XACT, LDA,
$ B, LDA, ISEED, INFO )
CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
SRNAMT = 'DSYTRS_AA'
LWORK = MAX( 1, 3*N-2 )
CALL DSYTRS_AA( UPLO, N, NRHS, AFAC, LDA,
$ IWORK, X, LDA, WORK, LWORK,
$ INFO )
*
* Check error code from DSYTRS and handle error.
*
IF( INFO.NE.0 ) THEN
IF( IZERO.EQ.0 ) THEN
CALL ALAERH( PATH, 'DSYTRS_AA', INFO, 0,
$ UPLO, N, N, -1, -1, NRHS, IMAT,
$ NFAIL, NERRS, NOUT )
END IF
ELSE
CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA
$ )
*
* Compute the residual for the solution
*
CALL DPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
$ WORK, LDA, RWORK, RESULT( 2 ) )
*
*
* Print information about the tests that did not pass
* the threshold.
*
DO 120 K = 2, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS,
$ IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
120 CONTINUE
END IF
NRUN = NRUN + 1
*
* End do for each value of NRHS in NSVAL.
*
130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
180 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ',
$ I2, ', test ', I2, ', ratio =', G12.5 )
9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ',
$ I2, ', test(', I2, ') =', G12.5 )
9995 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be <=',
$ I6 )
RETURN
*
* End of DCHKSY_AA
*
END