Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

357 lines
11 KiB

*> \brief \b DDRVRF4
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DDRVRF4( NOUT, NN, NVAL, THRESH, C1, C2, LDC, CRF, A,
* + LDA, D_WORK_DLANGE )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDC, NN, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* INTEGER NVAL( NN )
* DOUBLE PRECISION A( LDA, * ), C1( LDC, * ), C2( LDC, *),
* + CRF( * ), D_WORK_DLANGE( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DDRVRF4 tests the LAPACK RFP routines:
*> DSFRK
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To
*> have every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[out] C1
*> \verbatim
*> C1 is DOUBLE PRECISION array,
*> dimension (LDC,NMAX)
*> \endverbatim
*>
*> \param[out] C2
*> \verbatim
*> C2 is DOUBLE PRECISION array,
*> dimension (LDC,NMAX)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array A.
*> LDA >= max(1,NMAX).
*> \endverbatim
*>
*> \param[out] CRF
*> \verbatim
*> CRF is DOUBLE PRECISION array,
*> dimension ((NMAX*(NMAX+1))/2).
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array,
*> dimension (LDA,NMAX)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,NMAX).
*> \endverbatim
*>
*> \param[out] D_WORK_DLANGE
*> \verbatim
*> D_WORK_DLANGE is DOUBLE PRECISION array, dimension (NMAX)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DDRVRF4( NOUT, NN, NVAL, THRESH, C1, C2, LDC, CRF, A,
+ LDA, D_WORK_DLANGE )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDA, LDC, NN, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
INTEGER NVAL( NN )
DOUBLE PRECISION A( LDA, * ), C1( LDC, * ), C2( LDC, *),
+ CRF( * ), D_WORK_DLANGE( * )
* ..
*
* =====================================================================
* ..
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
INTEGER NTESTS
PARAMETER ( NTESTS = 1 )
* ..
* .. Local Scalars ..
CHARACTER UPLO, CFORM, TRANS
INTEGER I, IFORM, IIK, IIN, INFO, IUPLO, J, K, N,
+ NFAIL, NRUN, IALPHA, ITRANS
DOUBLE PRECISION ALPHA, BETA, EPS, NORMA, NORMC
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 ), FORMS( 2 ), TRANSS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLARND, DLANGE
EXTERNAL DLAMCH, DLARND, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DSYRK, DSFRK, DTFTTR, DTRTTF
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
DATA FORMS / 'N', 'T' /
DATA TRANSS / 'N', 'T' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
NRUN = 0
NFAIL = 0
INFO = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = DLAMCH( 'Precision' )
*
DO 150 IIN = 1, NN
*
N = NVAL( IIN )
*
DO 140 IIK = 1, NN
*
K = NVAL( IIN )
*
DO 130 IFORM = 1, 2
*
CFORM = FORMS( IFORM )
*
DO 120 IUPLO = 1, 2
*
UPLO = UPLOS( IUPLO )
*
DO 110 ITRANS = 1, 2
*
TRANS = TRANSS( ITRANS )
*
DO 100 IALPHA = 1, 4
*
IF ( IALPHA.EQ. 1) THEN
ALPHA = ZERO
BETA = ZERO
ELSE IF ( IALPHA.EQ. 2) THEN
ALPHA = ONE
BETA = ZERO
ELSE IF ( IALPHA.EQ. 3) THEN
ALPHA = ZERO
BETA = ONE
ELSE
ALPHA = DLARND( 2, ISEED )
BETA = DLARND( 2, ISEED )
END IF
*
* All the parameters are set:
* CFORM, UPLO, TRANS, M, N,
* ALPHA, and BETA
* READY TO TEST!
*
NRUN = NRUN + 1
*
IF ( ITRANS.EQ.1 ) THEN
*
* In this case we are NOTRANS, so A is N-by-K
*
DO J = 1, K
DO I = 1, N
A( I, J) = DLARND( 2, ISEED )
END DO
END DO
*
NORMA = DLANGE( 'I', N, K, A, LDA,
+ D_WORK_DLANGE )
*
ELSE
*
* In this case we are TRANS, so A is K-by-N
*
DO J = 1,N
DO I = 1, K
A( I, J) = DLARND( 2, ISEED )
END DO
END DO
*
NORMA = DLANGE( 'I', K, N, A, LDA,
+ D_WORK_DLANGE )
*
END IF
*
* Generate C1 our N--by--N symmetric matrix.
* Make sure C2 has the same upper/lower part,
* (the one that we do not touch), so
* copy the initial C1 in C2 in it.
*
DO J = 1, N
DO I = 1, N
C1( I, J) = DLARND( 2, ISEED )
C2(I,J) = C1(I,J)
END DO
END DO
*
* (See comment later on for why we use DLANGE and
* not DLANSY for C1.)
*
NORMC = DLANGE( 'I', N, N, C1, LDC,
+ D_WORK_DLANGE )
*
SRNAMT = 'DTRTTF'
CALL DTRTTF( CFORM, UPLO, N, C1, LDC, CRF,
+ INFO )
*
* call dsyrk the BLAS routine -> gives C1
*
SRNAMT = 'DSYRK '
CALL DSYRK( UPLO, TRANS, N, K, ALPHA, A, LDA,
+ BETA, C1, LDC )
*
* call dsfrk the RFP routine -> gives CRF
*
SRNAMT = 'DSFRK '
CALL DSFRK( CFORM, UPLO, TRANS, N, K, ALPHA, A,
+ LDA, BETA, CRF )
*
* convert CRF in full format -> gives C2
*
SRNAMT = 'DTFTTR'
CALL DTFTTR( CFORM, UPLO, N, CRF, C2, LDC,
+ INFO )
*
* compare C1 and C2
*
DO J = 1, N
DO I = 1, N
C1(I,J) = C1(I,J)-C2(I,J)
END DO
END DO
*
* Yes, C1 is symmetric so we could call DLANSY,
* but we want to check the upper part that is
* supposed to be unchanged and the diagonal that
* is supposed to be real -> DLANGE
*
RESULT(1) = DLANGE( 'I', N, N, C1, LDC,
+ D_WORK_DLANGE )
RESULT(1) = RESULT(1)
+ / MAX( ABS( ALPHA ) * NORMA
+ + ABS( BETA ) , ONE )
+ / MAX( N , 1 ) / EPS
*
IF( RESULT(1).GE.THRESH ) THEN
IF( NFAIL.EQ.0 ) THEN
WRITE( NOUT, * )
WRITE( NOUT, FMT = 9999 )
END IF
WRITE( NOUT, FMT = 9997 ) 'DSFRK',
+ CFORM, UPLO, TRANS, N, K, RESULT(1)
NFAIL = NFAIL + 1
END IF
*
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
*
* Print a summary of the results.
*
IF ( NFAIL.EQ.0 ) THEN
WRITE( NOUT, FMT = 9996 ) 'DSFRK', NRUN
ELSE
WRITE( NOUT, FMT = 9995 ) 'DSFRK', NFAIL, NRUN
END IF
*
9999 FORMAT( 1X, ' *** Error(s) or Failure(s) while testing DSFRK
+ ***')
9997 FORMAT( 1X, ' Failure in ',A5,', CFORM=''',A1,''',',
+ ' UPLO=''',A1,''',',' TRANS=''',A1,''',', ' N=',I3,', K =', I3,
+ ', test=',G12.5)
9996 FORMAT( 1X, 'All tests for ',A5,' auxiliary routine passed the ',
+ 'threshold ( ',I5,' tests run)')
9995 FORMAT( 1X, A6, ' auxiliary routine: ',I5,' out of ',I5,
+ ' tests failed to pass the threshold')
*
RETURN
*
* End of DDRVRF4
*
END