Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

528 lines
17 KiB

*> \brief \b DERRPOX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DERRPO( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DERRPO tests the error exits for the DOUBLE PRECISION routines
*> for symmetric positive definite matrices.
*>
*> Note that this file is used only when the XBLAS are available,
*> otherwise derrpo.f defines this subroutine.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DERRPO( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER EQ
CHARACTER*2 C2
INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
DOUBLE PRECISION ANRM, RCOND, BERR
* ..
* .. Local Arrays ..
INTEGER IW( NMAX )
DOUBLE PRECISION A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ R1( NMAX ), R2( NMAX ), W( 3*NMAX ), X( NMAX ),
$ S( NMAX ), ERR_BNDS_N( NMAX, 3 ),
$ ERR_BNDS_C( NMAX, 3), PARAMS( 1 )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, DPBCON, DPBEQU, DPBRFS, DPBTF2,
$ DPBTRF, DPBTRS, DPOCON, DPOEQU, DPORFS, DPOTF2,
$ DPOTRF, DPOTRI, DPOTRS, DPPCON, DPPEQU, DPPRFS,
$ DPPTRF, DPPTRI, DPPTRS, DPOEQUB, DPORFSX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = 1.D0 / DBLE( I+J )
AF( I, J ) = 1.D0 / DBLE( I+J )
10 CONTINUE
B( J ) = 0.D0
R1( J ) = 0.D0
R2( J ) = 0.D0
W( J ) = 0.D0
X( J ) = 0.D0
S( J ) = 0.D0
IW( J ) = J
20 CONTINUE
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'PO' ) ) THEN
*
* Test error exits of the routines that use the Cholesky
* decomposition of a symmetric positive definite matrix.
*
* DPOTRF
*
SRNAMT = 'DPOTRF'
INFOT = 1
CALL DPOTRF( '/', 0, A, 1, INFO )
CALL CHKXER( 'DPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPOTRF( 'U', -1, A, 1, INFO )
CALL CHKXER( 'DPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPOTRF( 'U', 2, A, 1, INFO )
CALL CHKXER( 'DPOTRF', INFOT, NOUT, LERR, OK )
*
* DPOTF2
*
SRNAMT = 'DPOTF2'
INFOT = 1
CALL DPOTF2( '/', 0, A, 1, INFO )
CALL CHKXER( 'DPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPOTF2( 'U', -1, A, 1, INFO )
CALL CHKXER( 'DPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPOTF2( 'U', 2, A, 1, INFO )
CALL CHKXER( 'DPOTF2', INFOT, NOUT, LERR, OK )
*
* DPOTRI
*
SRNAMT = 'DPOTRI'
INFOT = 1
CALL DPOTRI( '/', 0, A, 1, INFO )
CALL CHKXER( 'DPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPOTRI( 'U', -1, A, 1, INFO )
CALL CHKXER( 'DPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPOTRI( 'U', 2, A, 1, INFO )
CALL CHKXER( 'DPOTRI', INFOT, NOUT, LERR, OK )
*
* DPOTRS
*
SRNAMT = 'DPOTRS'
INFOT = 1
CALL DPOTRS( '/', 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPOTRS( 'U', -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPOTRS( 'U', 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DPOTRS( 'U', 2, 1, A, 1, B, 2, INFO )
CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DPOTRS( 'U', 2, 1, A, 2, B, 1, INFO )
CALL CHKXER( 'DPOTRS', INFOT, NOUT, LERR, OK )
*
* DPORFS
*
SRNAMT = 'DPORFS'
INFOT = 1
CALL DPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPORFS', INFOT, NOUT, LERR, OK )
*
* DPORFSX
*
N_ERR_BNDS = 3
NPARAMS = 0
SRNAMT = 'DPORFSX'
INFOT = 1
CALL DPORFSX( '/', EQ, 0, 0, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPORFSX( 'U', "/", -1, 0, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
EQ = 'N'
INFOT = 3
CALL DPORFSX( 'U', EQ, -1, 0, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPORFSX( 'U', EQ, 0, -1, A, 1, AF, 1, S, B, 1, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DPORFSX( 'U', EQ, 2, 1, A, 1, AF, 2, S, B, 2, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DPORFSX( 'U', EQ, 2, 1, A, 2, AF, 1, S, B, 2, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL DPORFSX( 'U', EQ, 2, 1, A, 2, AF, 2, S, B, 1, X, 2,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DPORFSX( 'U', EQ, 2, 1, A, 2, AF, 2, S, B, 2, X, 1,
$ RCOND, BERR, N_ERR_BNDS, ERR_BNDS_N, ERR_BNDS_C, NPARAMS,
$ PARAMS, W, IW, INFO )
CALL CHKXER( 'DPORFSX', INFOT, NOUT, LERR, OK )
*
* DPOCON
*
SRNAMT = 'DPOCON'
INFOT = 1
CALL DPOCON( '/', 0, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPOCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPOCON( 'U', -1, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPOCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPOCON( 'U', 2, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPOCON', INFOT, NOUT, LERR, OK )
*
* DPOEQU
*
SRNAMT = 'DPOEQU'
INFOT = 1
CALL DPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPOEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPOEQU', INFOT, NOUT, LERR, OK )
*
* DPOEQUB
*
SRNAMT = 'DPOEQUB'
INFOT = 1
CALL DPOEQUB( -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPOEQUB', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPOEQUB( 2, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPOEQUB', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN
*
* Test error exits of the routines that use the Cholesky
* decomposition of a symmetric positive definite packed matrix.
*
* DPPTRF
*
SRNAMT = 'DPPTRF'
INFOT = 1
CALL DPPTRF( '/', 0, A, INFO )
CALL CHKXER( 'DPPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPPTRF( 'U', -1, A, INFO )
CALL CHKXER( 'DPPTRF', INFOT, NOUT, LERR, OK )
*
* DPPTRI
*
SRNAMT = 'DPPTRI'
INFOT = 1
CALL DPPTRI( '/', 0, A, INFO )
CALL CHKXER( 'DPPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPPTRI( 'U', -1, A, INFO )
CALL CHKXER( 'DPPTRI', INFOT, NOUT, LERR, OK )
*
* DPPTRS
*
SRNAMT = 'DPPTRS'
INFOT = 1
CALL DPPTRS( '/', 0, 0, A, B, 1, INFO )
CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPPTRS( 'U', -1, 0, A, B, 1, INFO )
CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPPTRS( 'U', 0, -1, A, B, 1, INFO )
CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DPPTRS( 'U', 2, 1, A, B, 1, INFO )
CALL CHKXER( 'DPPTRS', INFOT, NOUT, LERR, OK )
*
* DPPRFS
*
SRNAMT = 'DPPRFS'
INFOT = 1
CALL DPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL DPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL DPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, IW,
$ INFO )
CALL CHKXER( 'DPPRFS', INFOT, NOUT, LERR, OK )
*
* DPPCON
*
SRNAMT = 'DPPCON'
INFOT = 1
CALL DPPCON( '/', 0, A, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPPCON( 'U', -1, A, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPPCON', INFOT, NOUT, LERR, OK )
*
* DPPEQU
*
SRNAMT = 'DPPEQU'
INFOT = 1
CALL DPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPPEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPPEQU', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
* Test error exits of the routines that use the Cholesky
* decomposition of a symmetric positive definite band matrix.
*
* DPBTRF
*
SRNAMT = 'DPBTRF'
INFOT = 1
CALL DPBTRF( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPBTRF( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPBTRF( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DPBTRF( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'DPBTRF', INFOT, NOUT, LERR, OK )
*
* DPBTF2
*
SRNAMT = 'DPBTF2'
INFOT = 1
CALL DPBTF2( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPBTF2( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPBTF2( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DPBTF2( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'DPBTF2', INFOT, NOUT, LERR, OK )
*
* DPBTRS
*
SRNAMT = 'DPBTRS'
INFOT = 1
CALL DPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'DPBTRS', INFOT, NOUT, LERR, OK )
*
* DPBRFS
*
SRNAMT = 'DPBRFS'
INFOT = 1
CALL DPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL DPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W,
$ IW, INFO )
CALL CHKXER( 'DPBRFS', INFOT, NOUT, LERR, OK )
*
* DPBCON
*
SRNAMT = 'DPBCON'
INFOT = 1
CALL DPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, IW, INFO )
CALL CHKXER( 'DPBCON', INFOT, NOUT, LERR, OK )
*
* DPBEQU
*
SRNAMT = 'DPBEQU'
INFOT = 1
CALL DPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL DPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'DPBEQU', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of DERRPOX
*
END