Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

194 lines
4.8 KiB

*> \brief \b DGERQS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGERQS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), TAU( * ),
* $ WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Compute a minimum-norm solution
*> min || A*X - B ||
*> using the RQ factorization
*> A = R*Q
*> computed by DGERQF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= M >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> Details of the RQ factorization of the original matrix A as
*> returned by DGERQF.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= M.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (M)
*> Details of the orthogonal matrix Q.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the right hand side vectors for the linear system.
*> On exit, the solution vectors X. Each solution vector
*> is contained in rows 1:N of a column of B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK must be at least NRHS,
*> and should be at least NRHS*NB, where NB is the block size
*> for this environment.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DGERQS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
$ INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. External Subroutines ..
EXTERNAL DLASET, DORMRQ, DTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. M.GT.N ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
$ THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGERQS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
* Solve R*X = B(n-m+1:n,:)
*
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', M, NRHS,
$ ONE, A( 1, N-M+1 ), LDA, B( N-M+1, 1 ), LDB )
*
* Set B(1:n-m,:) to zero
*
CALL DLASET( 'Full', N-M, NRHS, ZERO, ZERO, B, LDB )
*
* B := Q' * B
*
CALL DORMRQ( 'Left', 'Transpose', N, NRHS, M, A, LDA, TAU, B, LDB,
$ WORK, LWORK, INFO )
*
RETURN
*
* End of DGERQS
*
END