You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
540 lines
15 KiB
540 lines
15 KiB
*> \brief \b DLAVSP
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIAG, TRANS, UPLO
|
|
* INTEGER INFO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* DOUBLE PRECISION A( * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAVSP performs one of the matrix-vector operations
|
|
*> x := A*x or x := A'*x,
|
|
*> where x is an N element vector and A is one of the factors
|
|
*> from the block U*D*U' or L*D*L' factorization computed by DSPTRF.
|
|
*>
|
|
*> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
|
|
*> If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L' )
|
|
*> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L' )
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the factor stored in A is upper or lower
|
|
*> triangular.
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> Specifies the operation to be performed:
|
|
*> = 'N': x := A*x
|
|
*> = 'T': x := A'*x
|
|
*> = 'C': x := A'*x
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> Specifies whether or not the diagonal blocks are unit
|
|
*> matrices. If the diagonal blocks are assumed to be unit,
|
|
*> then A = U or A = L, otherwise A = U*D or A = L*D.
|
|
*> = 'U': Diagonal blocks are assumed to be unit matrices.
|
|
*> = 'N': Diagonal blocks are assumed to be non-unit matrices.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows and columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of vectors
|
|
*> x to be multiplied by A. NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (N*(N+1)/2)
|
|
*> The block diagonal matrix D and the multipliers used to
|
|
*> obtain the factor U or L, stored as a packed triangular
|
|
*> matrix as computed by DSPTRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> The pivot indices from DSPTRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
|
*> On entry, B contains NRHS vectors of length N.
|
|
*> On exit, B is overwritten with the product A * B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIAG, TRANS, UPLO
|
|
INTEGER INFO, LDB, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
DOUBLE PRECISION A( * ), B( LDB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE
|
|
PARAMETER ( ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOUNIT
|
|
INTEGER J, K, KC, KCNEXT, KP
|
|
DOUBLE PRECISION D11, D12, D21, D22, T1, T2
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
|
|
$ LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
|
|
$ THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -8
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLAVSP ', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
NOUNIT = LSAME( DIAG, 'N' )
|
|
*------------------------------------------
|
|
*
|
|
* Compute B := A * B (No transpose)
|
|
*
|
|
*------------------------------------------
|
|
IF( LSAME( TRANS, 'N' ) ) THEN
|
|
*
|
|
* Compute B := U*B
|
|
* where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
* Loop forward applying the transformations.
|
|
*
|
|
K = 1
|
|
KC = 1
|
|
10 CONTINUE
|
|
IF( K.GT.N )
|
|
$ GO TO 30
|
|
*
|
|
* 1 x 1 pivot block
|
|
*
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
*
|
|
* Multiply by the diagonal element if forming U * D.
|
|
*
|
|
IF( NOUNIT )
|
|
$ CALL DSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
|
|
*
|
|
* Multiply by P(K) * inv(U(K)) if K > 1.
|
|
*
|
|
IF( K.GT.1 ) THEN
|
|
*
|
|
* Apply the transformation.
|
|
*
|
|
CALL DGER( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ), LDB,
|
|
$ B( 1, 1 ), LDB )
|
|
*
|
|
* Interchange if P(K) != I.
|
|
*
|
|
KP = IPIV( K )
|
|
IF( KP.NE.K )
|
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
END IF
|
|
KC = KC + K
|
|
K = K + 1
|
|
ELSE
|
|
*
|
|
* 2 x 2 pivot block
|
|
*
|
|
KCNEXT = KC + K
|
|
*
|
|
* Multiply by the diagonal block if forming U * D.
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
D11 = A( KCNEXT-1 )
|
|
D22 = A( KCNEXT+K )
|
|
D12 = A( KCNEXT+K-1 )
|
|
D21 = D12
|
|
DO 20 J = 1, NRHS
|
|
T1 = B( K, J )
|
|
T2 = B( K+1, J )
|
|
B( K, J ) = D11*T1 + D12*T2
|
|
B( K+1, J ) = D21*T1 + D22*T2
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
* Multiply by P(K) * inv(U(K)) if K > 1.
|
|
*
|
|
IF( K.GT.1 ) THEN
|
|
*
|
|
* Apply the transformations.
|
|
*
|
|
CALL DGER( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ), LDB,
|
|
$ B( 1, 1 ), LDB )
|
|
CALL DGER( K-1, NRHS, ONE, A( KCNEXT ), 1,
|
|
$ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
|
|
*
|
|
* Interchange if P(K) != I.
|
|
*
|
|
KP = ABS( IPIV( K ) )
|
|
IF( KP.NE.K )
|
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
END IF
|
|
KC = KCNEXT + K + 1
|
|
K = K + 2
|
|
END IF
|
|
GO TO 10
|
|
30 CONTINUE
|
|
*
|
|
* Compute B := L*B
|
|
* where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
|
|
*
|
|
ELSE
|
|
*
|
|
* Loop backward applying the transformations to B.
|
|
*
|
|
K = N
|
|
KC = N*( N+1 ) / 2 + 1
|
|
40 CONTINUE
|
|
IF( K.LT.1 )
|
|
$ GO TO 60
|
|
KC = KC - ( N-K+1 )
|
|
*
|
|
* Test the pivot index. If greater than zero, a 1 x 1
|
|
* pivot was used, otherwise a 2 x 2 pivot was used.
|
|
*
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
*
|
|
* 1 x 1 pivot block:
|
|
*
|
|
* Multiply by the diagonal element if forming L * D.
|
|
*
|
|
IF( NOUNIT )
|
|
$ CALL DSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
|
|
*
|
|
* Multiply by P(K) * inv(L(K)) if K < N.
|
|
*
|
|
IF( K.NE.N ) THEN
|
|
KP = IPIV( K )
|
|
*
|
|
* Apply the transformation.
|
|
*
|
|
CALL DGER( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
|
|
$ LDB, B( K+1, 1 ), LDB )
|
|
*
|
|
* Interchange if a permutation was applied at the
|
|
* K-th step of the factorization.
|
|
*
|
|
IF( KP.NE.K )
|
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
END IF
|
|
K = K - 1
|
|
*
|
|
ELSE
|
|
*
|
|
* 2 x 2 pivot block:
|
|
*
|
|
KCNEXT = KC - ( N-K+2 )
|
|
*
|
|
* Multiply by the diagonal block if forming L * D.
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
D11 = A( KCNEXT )
|
|
D22 = A( KC )
|
|
D21 = A( KCNEXT+1 )
|
|
D12 = D21
|
|
DO 50 J = 1, NRHS
|
|
T1 = B( K-1, J )
|
|
T2 = B( K, J )
|
|
B( K-1, J ) = D11*T1 + D12*T2
|
|
B( K, J ) = D21*T1 + D22*T2
|
|
50 CONTINUE
|
|
END IF
|
|
*
|
|
* Multiply by P(K) * inv(L(K)) if K < N.
|
|
*
|
|
IF( K.NE.N ) THEN
|
|
*
|
|
* Apply the transformation.
|
|
*
|
|
CALL DGER( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
|
|
$ LDB, B( K+1, 1 ), LDB )
|
|
CALL DGER( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
|
|
$ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
|
|
*
|
|
* Interchange if a permutation was applied at the
|
|
* K-th step of the factorization.
|
|
*
|
|
KP = ABS( IPIV( K ) )
|
|
IF( KP.NE.K )
|
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
END IF
|
|
KC = KCNEXT
|
|
K = K - 2
|
|
END IF
|
|
GO TO 40
|
|
60 CONTINUE
|
|
END IF
|
|
*----------------------------------------
|
|
*
|
|
* Compute B := A' * B (transpose)
|
|
*
|
|
*----------------------------------------
|
|
ELSE
|
|
*
|
|
* Form B := U'*B
|
|
* where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
|
|
* and U' = inv(U'(1))*P(1)* ... *inv(U'(m))*P(m)
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
* Loop backward applying the transformations.
|
|
*
|
|
K = N
|
|
KC = N*( N+1 ) / 2 + 1
|
|
70 CONTINUE
|
|
IF( K.LT.1 )
|
|
$ GO TO 90
|
|
KC = KC - K
|
|
*
|
|
* 1 x 1 pivot block.
|
|
*
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
IF( K.GT.1 ) THEN
|
|
*
|
|
* Interchange if P(K) != I.
|
|
*
|
|
KP = IPIV( K )
|
|
IF( KP.NE.K )
|
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
*
|
|
* Apply the transformation
|
|
*
|
|
CALL DGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
|
|
$ A( KC ), 1, ONE, B( K, 1 ), LDB )
|
|
END IF
|
|
IF( NOUNIT )
|
|
$ CALL DSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
|
|
K = K - 1
|
|
*
|
|
* 2 x 2 pivot block.
|
|
*
|
|
ELSE
|
|
KCNEXT = KC - ( K-1 )
|
|
IF( K.GT.2 ) THEN
|
|
*
|
|
* Interchange if P(K) != I.
|
|
*
|
|
KP = ABS( IPIV( K ) )
|
|
IF( KP.NE.K-1 )
|
|
$ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
|
|
$ LDB )
|
|
*
|
|
* Apply the transformations
|
|
*
|
|
CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
|
|
$ A( KC ), 1, ONE, B( K, 1 ), LDB )
|
|
CALL DGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
|
|
$ A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
|
|
END IF
|
|
*
|
|
* Multiply by the diagonal block if non-unit.
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
D11 = A( KC-1 )
|
|
D22 = A( KC+K-1 )
|
|
D12 = A( KC+K-2 )
|
|
D21 = D12
|
|
DO 80 J = 1, NRHS
|
|
T1 = B( K-1, J )
|
|
T2 = B( K, J )
|
|
B( K-1, J ) = D11*T1 + D12*T2
|
|
B( K, J ) = D21*T1 + D22*T2
|
|
80 CONTINUE
|
|
END IF
|
|
KC = KCNEXT
|
|
K = K - 2
|
|
END IF
|
|
GO TO 70
|
|
90 CONTINUE
|
|
*
|
|
* Form B := L'*B
|
|
* where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
|
|
* and L' = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
|
|
*
|
|
ELSE
|
|
*
|
|
* Loop forward applying the L-transformations.
|
|
*
|
|
K = 1
|
|
KC = 1
|
|
100 CONTINUE
|
|
IF( K.GT.N )
|
|
$ GO TO 120
|
|
*
|
|
* 1 x 1 pivot block
|
|
*
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
IF( K.LT.N ) THEN
|
|
*
|
|
* Interchange if P(K) != I.
|
|
*
|
|
KP = IPIV( K )
|
|
IF( KP.NE.K )
|
|
$ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
|
|
*
|
|
* Apply the transformation
|
|
*
|
|
CALL DGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
|
|
$ LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
|
|
END IF
|
|
IF( NOUNIT )
|
|
$ CALL DSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
|
|
KC = KC + N - K + 1
|
|
K = K + 1
|
|
*
|
|
* 2 x 2 pivot block.
|
|
*
|
|
ELSE
|
|
KCNEXT = KC + N - K + 1
|
|
IF( K.LT.N-1 ) THEN
|
|
*
|
|
* Interchange if P(K) != I.
|
|
*
|
|
KP = ABS( IPIV( K ) )
|
|
IF( KP.NE.K+1 )
|
|
$ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
|
|
$ LDB )
|
|
*
|
|
* Apply the transformation
|
|
*
|
|
CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
|
|
$ B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
|
|
$ B( K+1, 1 ), LDB )
|
|
CALL DGEMV( 'Transpose', N-K-1, NRHS, ONE,
|
|
$ B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
|
|
$ B( K, 1 ), LDB )
|
|
END IF
|
|
*
|
|
* Multiply by the diagonal block if non-unit.
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
D11 = A( KC )
|
|
D22 = A( KCNEXT )
|
|
D21 = A( KC+1 )
|
|
D12 = D21
|
|
DO 110 J = 1, NRHS
|
|
T1 = B( K, J )
|
|
T2 = B( K+1, J )
|
|
B( K, J ) = D11*T1 + D12*T2
|
|
B( K+1, J ) = D21*T1 + D22*T2
|
|
110 CONTINUE
|
|
END IF
|
|
KC = KCNEXT + ( N-K )
|
|
K = K + 2
|
|
END IF
|
|
GO TO 100
|
|
120 CONTINUE
|
|
END IF
|
|
*
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of DLAVSP
|
|
*
|
|
END
|
|
|