You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
6.6 KiB
257 lines
6.6 KiB
*> \brief \b SGTT01
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
|
|
* LDWORK, RWORK, RESID )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDWORK, N
|
|
* REAL RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* REAL D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
|
|
* $ DU2( * ), DUF( * ), RWORK( * ),
|
|
* $ WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGTT01 reconstructs a tridiagonal matrix A from its LU factorization
|
|
*> and computes the residual
|
|
*> norm(L*U - A) / ( norm(A) * EPS ),
|
|
*> where EPS is the machine epsilon.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DL
|
|
*> \verbatim
|
|
*> DL is REAL array, dimension (N-1)
|
|
*> The (n-1) sub-diagonal elements of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The diagonal elements of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DU
|
|
*> \verbatim
|
|
*> DU is REAL array, dimension (N-1)
|
|
*> The (n-1) super-diagonal elements of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DLF
|
|
*> \verbatim
|
|
*> DLF is REAL array, dimension (N-1)
|
|
*> The (n-1) multipliers that define the matrix L from the
|
|
*> LU factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DF
|
|
*> \verbatim
|
|
*> DF is REAL array, dimension (N)
|
|
*> The n diagonal elements of the upper triangular matrix U from
|
|
*> the LU factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DUF
|
|
*> \verbatim
|
|
*> DUF is REAL array, dimension (N-1)
|
|
*> The (n-1) elements of the first super-diagonal of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DU2
|
|
*> \verbatim
|
|
*> DU2 is REAL array, dimension (N-2)
|
|
*> The (n-2) elements of the second super-diagonal of U.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> The pivot indices; for 1 <= i <= n, row i of the matrix was
|
|
*> interchanged with row IPIV(i). IPIV(i) will always be either
|
|
*> i or i+1; IPIV(i) = i indicates a row interchange was not
|
|
*> required.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (LDWORK,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDWORK
|
|
*> \verbatim
|
|
*> LDWORK is INTEGER
|
|
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESID
|
|
*> \verbatim
|
|
*> RESID is REAL
|
|
*> The scaled residual: norm(L*U - A) / (norm(A) * EPS)
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
|
|
$ LDWORK, RWORK, RESID )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDWORK, N
|
|
REAL RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
REAL D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
|
|
$ DU2( * ), DUF( * ), RWORK( * ),
|
|
$ WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IP, J, LASTJ
|
|
REAL ANORM, EPS, LI
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH, SLANGT, SLANHS
|
|
EXTERNAL SLAMCH, SLANGT, SLANHS
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MIN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SAXPY, SSWAP
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
RESID = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
EPS = SLAMCH( 'Epsilon' )
|
|
*
|
|
* Copy the matrix U to WORK.
|
|
*
|
|
DO 20 J = 1, N
|
|
DO 10 I = 1, N
|
|
WORK( I, J ) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
DO 30 I = 1, N
|
|
IF( I.EQ.1 ) THEN
|
|
WORK( I, I ) = DF( I )
|
|
IF( N.GE.2 )
|
|
$ WORK( I, I+1 ) = DUF( I )
|
|
IF( N.GE.3 )
|
|
$ WORK( I, I+2 ) = DU2( I )
|
|
ELSE IF( I.EQ.N ) THEN
|
|
WORK( I, I ) = DF( I )
|
|
ELSE
|
|
WORK( I, I ) = DF( I )
|
|
WORK( I, I+1 ) = DUF( I )
|
|
IF( I.LT.N-1 )
|
|
$ WORK( I, I+2 ) = DU2( I )
|
|
END IF
|
|
30 CONTINUE
|
|
*
|
|
* Multiply on the left by L.
|
|
*
|
|
LASTJ = N
|
|
DO 40 I = N - 1, 1, -1
|
|
LI = DLF( I )
|
|
CALL SAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK,
|
|
$ WORK( I+1, I ), LDWORK )
|
|
IP = IPIV( I )
|
|
IF( IP.EQ.I ) THEN
|
|
LASTJ = MIN( I+2, N )
|
|
ELSE
|
|
CALL SSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ),
|
|
$ LDWORK )
|
|
END IF
|
|
40 CONTINUE
|
|
*
|
|
* Subtract the matrix A.
|
|
*
|
|
WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 )
|
|
IF( N.GT.1 ) THEN
|
|
WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 )
|
|
WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 )
|
|
WORK( N, N ) = WORK( N, N ) - D( N )
|
|
DO 50 I = 2, N - 1
|
|
WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 )
|
|
WORK( I, I ) = WORK( I, I ) - D( I )
|
|
WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I )
|
|
50 CONTINUE
|
|
END IF
|
|
*
|
|
* Compute the 1-norm of the tridiagonal matrix A.
|
|
*
|
|
ANORM = SLANGT( '1', N, DL, D, DU )
|
|
*
|
|
* Compute the 1-norm of WORK, which is only guaranteed to be
|
|
* upper Hessenberg.
|
|
*
|
|
RESID = SLANHS( '1', N, WORK, LDWORK, RWORK )
|
|
*
|
|
* Compute norm(L*U - A) / (norm(A) * EPS)
|
|
*
|
|
IF( ANORM.LE.ZERO ) THEN
|
|
IF( RESID.NE.ZERO )
|
|
$ RESID = ONE / EPS
|
|
ELSE
|
|
RESID = ( RESID / ANORM ) / EPS
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SGTT01
|
|
*
|
|
END
|
|
|