You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
6.0 KiB
219 lines
6.0 KiB
*> \brief \b SLAHILB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK, INFO)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER N, NRHS, LDA, LDX, LDB, INFO
|
|
* .. Array Arguments ..
|
|
* REAL A(LDA, N), X(LDX, NRHS), B(LDB, NRHS), WORK(N)
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLAHILB generates an N by N scaled Hilbert matrix in A along with
|
|
*> NRHS right-hand sides in B and solutions in X such that A*X=B.
|
|
*>
|
|
*> The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all
|
|
*> entries are integers. The right-hand sides are the first NRHS
|
|
*> columns of M * the identity matrix, and the solutions are the
|
|
*> first NRHS columns of the inverse Hilbert matrix.
|
|
*>
|
|
*> The condition number of the Hilbert matrix grows exponentially with
|
|
*> its size, roughly as O(e ** (3.5*N)). Additionally, the inverse
|
|
*> Hilbert matrices beyond a relatively small dimension cannot be
|
|
*> generated exactly without extra precision. Precision is exhausted
|
|
*> when the largest entry in the inverse Hilbert matrix is greater than
|
|
*> 2 to the power of the number of bits in the fraction of the data type
|
|
*> used plus one, which is 24 for single precision.
|
|
*>
|
|
*> In single, the generated solution is exact for N <= 6 and has
|
|
*> small componentwise error for 7 <= N <= 11.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The requested number of right-hand sides.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA, N)
|
|
*> The generated scaled Hilbert matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is REAL array, dimension (LDX, NRHS)
|
|
*> The generated exact solutions. Currently, the first NRHS
|
|
*> columns of the inverse Hilbert matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX
|
|
*> \verbatim
|
|
*> LDX is INTEGER
|
|
*> The leading dimension of the array X. LDX >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB, NRHS)
|
|
*> The generated right-hand sides. Currently, the first NRHS
|
|
*> columns of LCM(1, 2, ..., 2*N-1) * the identity matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> = 1: N is too large; the data is still generated but may not
|
|
*> be not exact.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK, INFO)
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER N, NRHS, LDA, LDX, LDB, INFO
|
|
* .. Array Arguments ..
|
|
REAL A(LDA, N), X(LDX, NRHS), B(LDB, NRHS), WORK(N)
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
* .. Local Scalars ..
|
|
INTEGER TM, TI, R
|
|
INTEGER M
|
|
INTEGER I, J
|
|
* ..
|
|
* .. Parameters ..
|
|
* NMAX_EXACT the largest dimension where the generated data is
|
|
* exact.
|
|
* NMAX_APPROX the largest dimension where the generated data has
|
|
* a small componentwise relative error.
|
|
INTEGER NMAX_EXACT, NMAX_APPROX
|
|
PARAMETER (NMAX_EXACT = 6, NMAX_APPROX = 11)
|
|
* ..
|
|
* .. External Functions
|
|
EXTERNAL SLASET
|
|
INTRINSIC REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
IF (N .LT. 0 .OR. N .GT. NMAX_APPROX) THEN
|
|
INFO = -1
|
|
ELSE IF (NRHS .LT. 0) THEN
|
|
INFO = -2
|
|
ELSE IF (LDA .LT. N) THEN
|
|
INFO = -4
|
|
ELSE IF (LDX .LT. N) THEN
|
|
INFO = -6
|
|
ELSE IF (LDB .LT. N) THEN
|
|
INFO = -8
|
|
END IF
|
|
IF (INFO .LT. 0) THEN
|
|
CALL XERBLA('SLAHILB', -INFO)
|
|
RETURN
|
|
END IF
|
|
IF (N .GT. NMAX_EXACT) THEN
|
|
INFO = 1
|
|
END IF
|
|
*
|
|
* Compute M = the LCM of the integers [1, 2*N-1]. The largest
|
|
* reasonable N is small enough that integers suffice (up to N = 11).
|
|
M = 1
|
|
DO I = 2, (2*N-1)
|
|
TM = M
|
|
TI = I
|
|
R = MOD(TM, TI)
|
|
DO WHILE (R .NE. 0)
|
|
TM = TI
|
|
TI = R
|
|
R = MOD(TM, TI)
|
|
END DO
|
|
M = (M / TI) * I
|
|
END DO
|
|
*
|
|
* Generate the scaled Hilbert matrix in A
|
|
DO J = 1, N
|
|
DO I = 1, N
|
|
A(I, J) = REAL(M) / (I + J - 1)
|
|
END DO
|
|
END DO
|
|
*
|
|
* Generate matrix B as simply the first NRHS columns of M * the
|
|
* identity.
|
|
CALL SLASET('Full', N, NRHS, 0.0, REAL(M), B, LDB)
|
|
*
|
|
* Generate the true solutions in X. Because B = the first NRHS
|
|
* columns of M*I, the true solutions are just the first NRHS columns
|
|
* of the inverse Hilbert matrix.
|
|
WORK(1) = N
|
|
DO J = 2, N
|
|
WORK(J) = ( ( (WORK(J-1)/(J-1)) * (J-1 - N) ) /(J-1) )
|
|
$ * (N +J -1)
|
|
END DO
|
|
*
|
|
DO J = 1, NRHS
|
|
DO I = 1, N
|
|
X(I, J) = (WORK(I)*WORK(J)) / (I + J - 1)
|
|
END DO
|
|
END DO
|
|
*
|
|
END
|
|
|
|
|