You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
680 lines
21 KiB
680 lines
21 KiB
*> \brief \b SLATTB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
|
|
* LDAB, B, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER DIAG, TRANS, UPLO
|
|
* INTEGER IMAT, INFO, KD, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER ISEED( 4 )
|
|
* REAL AB( LDAB, * ), B( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLATTB generates a triangular test matrix in 2-dimensional storage.
|
|
*> IMAT and UPLO uniquely specify the properties of the test matrix,
|
|
*> which is returned in the array A.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] IMAT
|
|
*> \verbatim
|
|
*> IMAT is INTEGER
|
|
*> An integer key describing which matrix to generate for this
|
|
*> path.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the matrix A will be upper or lower
|
|
*> triangular.
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> Specifies whether the matrix or its transpose will be used.
|
|
*> = 'N': No transpose
|
|
*> = 'T': Transpose
|
|
*> = 'C': Conjugate transpose (= transpose)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DIAG
|
|
*> \verbatim
|
|
*> DIAG is CHARACTER*1
|
|
*> Specifies whether or not the matrix A is unit triangular.
|
|
*> = 'N': Non-unit triangular
|
|
*> = 'U': Unit triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ISEED
|
|
*> \verbatim
|
|
*> ISEED is INTEGER array, dimension (4)
|
|
*> The seed vector for the random number generator (used in
|
|
*> SLATMS). Modified on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix to be generated.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KD
|
|
*> \verbatim
|
|
*> KD is INTEGER
|
|
*> The number of superdiagonals or subdiagonals of the banded
|
|
*> triangular matrix A. KD >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AB
|
|
*> \verbatim
|
|
*> AB is REAL array, dimension (LDAB,N)
|
|
*> The upper or lower triangular banded matrix A, stored in the
|
|
*> first KD+1 rows of AB. Let j be a column of A, 1<=j<=n.
|
|
*> If UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j.
|
|
*> If UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= KD+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
|
|
$ LDAB, B, WORK, INFO )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIAG, TRANS, UPLO
|
|
INTEGER IMAT, INFO, KD, LDAB, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER ISEED( 4 )
|
|
REAL AB( LDAB, * ), B( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, TWO, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
CHARACTER DIST, PACKIT, TYPE
|
|
CHARACTER*3 PATH
|
|
INTEGER I, IOFF, IY, J, JCOUNT, KL, KU, LENJ, MODE
|
|
REAL ANORM, BIGNUM, BNORM, BSCAL, CNDNUM, PLUS1,
|
|
$ PLUS2, REXP, SFAC, SMLNUM, STAR1, TEXP, TLEFT,
|
|
$ TNORM, TSCAL, ULP, UNFL
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ISAMAX
|
|
REAL SLAMCH, SLARND
|
|
EXTERNAL LSAME, ISAMAX, SLAMCH, SLARND
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SCOPY, SLARNV, SLATB4, SLATMS, SSCAL, SSWAP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, REAL, SIGN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
PATH( 1: 1 ) = 'Single precision'
|
|
PATH( 2: 3 ) = 'TB'
|
|
UNFL = SLAMCH( 'Safe minimum' )
|
|
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
|
|
SMLNUM = UNFL
|
|
BIGNUM = ( ONE-ULP ) / SMLNUM
|
|
IF( ( IMAT.GE.6 .AND. IMAT.LE.9 ) .OR. IMAT.EQ.17 ) THEN
|
|
DIAG = 'U'
|
|
ELSE
|
|
DIAG = 'N'
|
|
END IF
|
|
INFO = 0
|
|
*
|
|
* Quick return if N.LE.0.
|
|
*
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
* Call SLATB4 to set parameters for SLATMS.
|
|
*
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( UPPER ) THEN
|
|
CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
|
|
$ CNDNUM, DIST )
|
|
KU = KD
|
|
IOFF = 1 + MAX( 0, KD-N+1 )
|
|
KL = 0
|
|
PACKIT = 'Q'
|
|
ELSE
|
|
CALL SLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
|
|
$ CNDNUM, DIST )
|
|
KL = KD
|
|
IOFF = 1
|
|
KU = 0
|
|
PACKIT = 'B'
|
|
END IF
|
|
*
|
|
* IMAT <= 5: Non-unit triangular matrix
|
|
*
|
|
IF( IMAT.LE.5 ) THEN
|
|
CALL SLATMS( N, N, DIST, ISEED, TYPE, B, MODE, CNDNUM, ANORM,
|
|
$ KL, KU, PACKIT, AB( IOFF, 1 ), LDAB, WORK, INFO )
|
|
*
|
|
* IMAT > 5: Unit triangular matrix
|
|
* The diagonal is deliberately set to something other than 1.
|
|
*
|
|
* IMAT = 6: Matrix is the identity
|
|
*
|
|
ELSE IF( IMAT.EQ.6 ) THEN
|
|
IF( UPPER ) THEN
|
|
DO 20 J = 1, N
|
|
DO 10 I = MAX( 1, KD+2-J ), KD
|
|
AB( I, J ) = ZERO
|
|
10 CONTINUE
|
|
AB( KD+1, J ) = J
|
|
20 CONTINUE
|
|
ELSE
|
|
DO 40 J = 1, N
|
|
AB( 1, J ) = J
|
|
DO 30 I = 2, MIN( KD+1, N-J+1 )
|
|
AB( I, J ) = ZERO
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
* IMAT > 6: Non-trivial unit triangular matrix
|
|
*
|
|
* A unit triangular matrix T with condition CNDNUM is formed.
|
|
* In this version, T only has bandwidth 2, the rest of it is zero.
|
|
*
|
|
ELSE IF( IMAT.LE.9 ) THEN
|
|
TNORM = SQRT( CNDNUM )
|
|
*
|
|
* Initialize AB to zero.
|
|
*
|
|
IF( UPPER ) THEN
|
|
DO 60 J = 1, N
|
|
DO 50 I = MAX( 1, KD+2-J ), KD
|
|
AB( I, J ) = ZERO
|
|
50 CONTINUE
|
|
AB( KD+1, J ) = REAL( J )
|
|
60 CONTINUE
|
|
ELSE
|
|
DO 80 J = 1, N
|
|
DO 70 I = 2, MIN( KD+1, N-J+1 )
|
|
AB( I, J ) = ZERO
|
|
70 CONTINUE
|
|
AB( 1, J ) = REAL( J )
|
|
80 CONTINUE
|
|
END IF
|
|
*
|
|
* Special case: T is tridiagonal. Set every other offdiagonal
|
|
* so that the matrix has norm TNORM+1.
|
|
*
|
|
IF( KD.EQ.1 ) THEN
|
|
IF( UPPER ) THEN
|
|
AB( 1, 2 ) = SIGN( TNORM, SLARND( 2, ISEED ) )
|
|
LENJ = ( N-3 ) / 2
|
|
CALL SLARNV( 2, ISEED, LENJ, WORK )
|
|
DO 90 J = 1, LENJ
|
|
AB( 1, 2*( J+1 ) ) = TNORM*WORK( J )
|
|
90 CONTINUE
|
|
ELSE
|
|
AB( 2, 1 ) = SIGN( TNORM, SLARND( 2, ISEED ) )
|
|
LENJ = ( N-3 ) / 2
|
|
CALL SLARNV( 2, ISEED, LENJ, WORK )
|
|
DO 100 J = 1, LENJ
|
|
AB( 2, 2*J+1 ) = TNORM*WORK( J )
|
|
100 CONTINUE
|
|
END IF
|
|
ELSE IF( KD.GT.1 ) THEN
|
|
*
|
|
* Form a unit triangular matrix T with condition CNDNUM. T is
|
|
* given by
|
|
* | 1 + * |
|
|
* | 1 + |
|
|
* T = | 1 + * |
|
|
* | 1 + |
|
|
* | 1 + * |
|
|
* | 1 + |
|
|
* | . . . |
|
|
* Each element marked with a '*' is formed by taking the product
|
|
* of the adjacent elements marked with '+'. The '*'s can be
|
|
* chosen freely, and the '+'s are chosen so that the inverse of
|
|
* T will have elements of the same magnitude as T.
|
|
*
|
|
* The two offdiagonals of T are stored in WORK.
|
|
*
|
|
STAR1 = SIGN( TNORM, SLARND( 2, ISEED ) )
|
|
SFAC = SQRT( TNORM )
|
|
PLUS1 = SIGN( SFAC, SLARND( 2, ISEED ) )
|
|
DO 110 J = 1, N, 2
|
|
PLUS2 = STAR1 / PLUS1
|
|
WORK( J ) = PLUS1
|
|
WORK( N+J ) = STAR1
|
|
IF( J+1.LE.N ) THEN
|
|
WORK( J+1 ) = PLUS2
|
|
WORK( N+J+1 ) = ZERO
|
|
PLUS1 = STAR1 / PLUS2
|
|
*
|
|
* Generate a new *-value with norm between sqrt(TNORM)
|
|
* and TNORM.
|
|
*
|
|
REXP = SLARND( 2, ISEED )
|
|
IF( REXP.LT.ZERO ) THEN
|
|
STAR1 = -SFAC**( ONE-REXP )
|
|
ELSE
|
|
STAR1 = SFAC**( ONE+REXP )
|
|
END IF
|
|
END IF
|
|
110 CONTINUE
|
|
*
|
|
* Copy the tridiagonal T to AB.
|
|
*
|
|
IF( UPPER ) THEN
|
|
CALL SCOPY( N-1, WORK, 1, AB( KD, 2 ), LDAB )
|
|
CALL SCOPY( N-2, WORK( N+1 ), 1, AB( KD-1, 3 ), LDAB )
|
|
ELSE
|
|
CALL SCOPY( N-1, WORK, 1, AB( 2, 1 ), LDAB )
|
|
CALL SCOPY( N-2, WORK( N+1 ), 1, AB( 3, 1 ), LDAB )
|
|
END IF
|
|
END IF
|
|
*
|
|
* IMAT > 9: Pathological test cases. These triangular matrices
|
|
* are badly scaled or badly conditioned, so when used in solving a
|
|
* triangular system they may cause overflow in the solution vector.
|
|
*
|
|
ELSE IF( IMAT.EQ.10 ) THEN
|
|
*
|
|
* Type 10: Generate a triangular matrix with elements between
|
|
* -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
|
|
* Make the right hand side large so that it requires scaling.
|
|
*
|
|
IF( UPPER ) THEN
|
|
DO 120 J = 1, N
|
|
LENJ = MIN( J, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
|
|
AB( KD+1, J ) = SIGN( TWO, AB( KD+1, J ) )
|
|
120 CONTINUE
|
|
ELSE
|
|
DO 130 J = 1, N
|
|
LENJ = MIN( N-J+1, KD+1 )
|
|
IF( LENJ.GT.0 )
|
|
$ CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
|
|
AB( 1, J ) = SIGN( TWO, AB( 1, J ) )
|
|
130 CONTINUE
|
|
END IF
|
|
*
|
|
* Set the right hand side so that the largest value is BIGNUM.
|
|
*
|
|
CALL SLARNV( 2, ISEED, N, B )
|
|
IY = ISAMAX( N, B, 1 )
|
|
BNORM = ABS( B( IY ) )
|
|
BSCAL = BIGNUM / MAX( ONE, BNORM )
|
|
CALL SSCAL( N, BSCAL, B, 1 )
|
|
*
|
|
ELSE IF( IMAT.EQ.11 ) THEN
|
|
*
|
|
* Type 11: Make the first diagonal element in the solve small to
|
|
* cause immediate overflow when dividing by T(j,j).
|
|
* In type 11, the offdiagonal elements are small (CNORM(j) < 1).
|
|
*
|
|
CALL SLARNV( 2, ISEED, N, B )
|
|
TSCAL = ONE / REAL( KD+1 )
|
|
IF( UPPER ) THEN
|
|
DO 140 J = 1, N
|
|
LENJ = MIN( J, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
|
|
CALL SSCAL( LENJ-1, TSCAL, AB( KD+2-LENJ, J ), 1 )
|
|
AB( KD+1, J ) = SIGN( ONE, AB( KD+1, J ) )
|
|
140 CONTINUE
|
|
AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
|
|
ELSE
|
|
DO 150 J = 1, N
|
|
LENJ = MIN( N-J+1, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
|
|
IF( LENJ.GT.1 )
|
|
$ CALL SSCAL( LENJ-1, TSCAL, AB( 2, J ), 1 )
|
|
AB( 1, J ) = SIGN( ONE, AB( 1, J ) )
|
|
150 CONTINUE
|
|
AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
|
|
END IF
|
|
*
|
|
ELSE IF( IMAT.EQ.12 ) THEN
|
|
*
|
|
* Type 12: Make the first diagonal element in the solve small to
|
|
* cause immediate overflow when dividing by T(j,j).
|
|
* In type 12, the offdiagonal elements are O(1) (CNORM(j) > 1).
|
|
*
|
|
CALL SLARNV( 2, ISEED, N, B )
|
|
IF( UPPER ) THEN
|
|
DO 160 J = 1, N
|
|
LENJ = MIN( J, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
|
|
AB( KD+1, J ) = SIGN( ONE, AB( KD+1, J ) )
|
|
160 CONTINUE
|
|
AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
|
|
ELSE
|
|
DO 170 J = 1, N
|
|
LENJ = MIN( N-J+1, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
|
|
AB( 1, J ) = SIGN( ONE, AB( 1, J ) )
|
|
170 CONTINUE
|
|
AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
|
|
END IF
|
|
*
|
|
ELSE IF( IMAT.EQ.13 ) THEN
|
|
*
|
|
* Type 13: T is diagonal with small numbers on the diagonal to
|
|
* make the growth factor underflow, but a small right hand side
|
|
* chosen so that the solution does not overflow.
|
|
*
|
|
IF( UPPER ) THEN
|
|
JCOUNT = 1
|
|
DO 190 J = N, 1, -1
|
|
DO 180 I = MAX( 1, KD+1-( J-1 ) ), KD
|
|
AB( I, J ) = ZERO
|
|
180 CONTINUE
|
|
IF( JCOUNT.LE.2 ) THEN
|
|
AB( KD+1, J ) = SMLNUM
|
|
ELSE
|
|
AB( KD+1, J ) = ONE
|
|
END IF
|
|
JCOUNT = JCOUNT + 1
|
|
IF( JCOUNT.GT.4 )
|
|
$ JCOUNT = 1
|
|
190 CONTINUE
|
|
ELSE
|
|
JCOUNT = 1
|
|
DO 210 J = 1, N
|
|
DO 200 I = 2, MIN( N-J+1, KD+1 )
|
|
AB( I, J ) = ZERO
|
|
200 CONTINUE
|
|
IF( JCOUNT.LE.2 ) THEN
|
|
AB( 1, J ) = SMLNUM
|
|
ELSE
|
|
AB( 1, J ) = ONE
|
|
END IF
|
|
JCOUNT = JCOUNT + 1
|
|
IF( JCOUNT.GT.4 )
|
|
$ JCOUNT = 1
|
|
210 CONTINUE
|
|
END IF
|
|
*
|
|
* Set the right hand side alternately zero and small.
|
|
*
|
|
IF( UPPER ) THEN
|
|
B( 1 ) = ZERO
|
|
DO 220 I = N, 2, -2
|
|
B( I ) = ZERO
|
|
B( I-1 ) = SMLNUM
|
|
220 CONTINUE
|
|
ELSE
|
|
B( N ) = ZERO
|
|
DO 230 I = 1, N - 1, 2
|
|
B( I ) = ZERO
|
|
B( I+1 ) = SMLNUM
|
|
230 CONTINUE
|
|
END IF
|
|
*
|
|
ELSE IF( IMAT.EQ.14 ) THEN
|
|
*
|
|
* Type 14: Make the diagonal elements small to cause gradual
|
|
* overflow when dividing by T(j,j). To control the amount of
|
|
* scaling needed, the matrix is bidiagonal.
|
|
*
|
|
TEXP = ONE / REAL( KD+1 )
|
|
TSCAL = SMLNUM**TEXP
|
|
CALL SLARNV( 2, ISEED, N, B )
|
|
IF( UPPER ) THEN
|
|
DO 250 J = 1, N
|
|
DO 240 I = MAX( 1, KD+2-J ), KD
|
|
AB( I, J ) = ZERO
|
|
240 CONTINUE
|
|
IF( J.GT.1 .AND. KD.GT.0 )
|
|
$ AB( KD, J ) = -ONE
|
|
AB( KD+1, J ) = TSCAL
|
|
250 CONTINUE
|
|
B( N ) = ONE
|
|
ELSE
|
|
DO 270 J = 1, N
|
|
DO 260 I = 3, MIN( N-J+1, KD+1 )
|
|
AB( I, J ) = ZERO
|
|
260 CONTINUE
|
|
IF( J.LT.N .AND. KD.GT.0 )
|
|
$ AB( 2, J ) = -ONE
|
|
AB( 1, J ) = TSCAL
|
|
270 CONTINUE
|
|
B( 1 ) = ONE
|
|
END IF
|
|
*
|
|
ELSE IF( IMAT.EQ.15 ) THEN
|
|
*
|
|
* Type 15: One zero diagonal element.
|
|
*
|
|
IY = N / 2 + 1
|
|
IF( UPPER ) THEN
|
|
DO 280 J = 1, N
|
|
LENJ = MIN( J, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
|
|
IF( J.NE.IY ) THEN
|
|
AB( KD+1, J ) = SIGN( TWO, AB( KD+1, J ) )
|
|
ELSE
|
|
AB( KD+1, J ) = ZERO
|
|
END IF
|
|
280 CONTINUE
|
|
ELSE
|
|
DO 290 J = 1, N
|
|
LENJ = MIN( N-J+1, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
|
|
IF( J.NE.IY ) THEN
|
|
AB( 1, J ) = SIGN( TWO, AB( 1, J ) )
|
|
ELSE
|
|
AB( 1, J ) = ZERO
|
|
END IF
|
|
290 CONTINUE
|
|
END IF
|
|
CALL SLARNV( 2, ISEED, N, B )
|
|
CALL SSCAL( N, TWO, B, 1 )
|
|
*
|
|
ELSE IF( IMAT.EQ.16 ) THEN
|
|
*
|
|
* Type 16: Make the offdiagonal elements large to cause overflow
|
|
* when adding a column of T. In the non-transposed case, the
|
|
* matrix is constructed to cause overflow when adding a column in
|
|
* every other step.
|
|
*
|
|
TSCAL = UNFL / ULP
|
|
TSCAL = ( ONE-ULP ) / TSCAL
|
|
DO 310 J = 1, N
|
|
DO 300 I = 1, KD + 1
|
|
AB( I, J ) = ZERO
|
|
300 CONTINUE
|
|
310 CONTINUE
|
|
TEXP = ONE
|
|
IF( KD.GT.0 ) THEN
|
|
IF( UPPER ) THEN
|
|
DO 330 J = N, 1, -KD
|
|
DO 320 I = J, MAX( 1, J-KD+1 ), -2
|
|
AB( 1+( J-I ), I ) = -TSCAL / REAL( KD+2 )
|
|
AB( KD+1, I ) = ONE
|
|
B( I ) = TEXP*( ONE-ULP )
|
|
IF( I.GT.MAX( 1, J-KD+1 ) ) THEN
|
|
AB( 2+( J-I ), I-1 ) = -( TSCAL / REAL( KD+2 ) )
|
|
$ / REAL( KD+3 )
|
|
AB( KD+1, I-1 ) = ONE
|
|
B( I-1 ) = TEXP*REAL( ( KD+1 )*( KD+1 )+KD )
|
|
END IF
|
|
TEXP = TEXP*TWO
|
|
320 CONTINUE
|
|
B( MAX( 1, J-KD+1 ) ) = ( REAL( KD+2 ) /
|
|
$ REAL( KD+3 ) )*TSCAL
|
|
330 CONTINUE
|
|
ELSE
|
|
DO 350 J = 1, N, KD
|
|
TEXP = ONE
|
|
LENJ = MIN( KD+1, N-J+1 )
|
|
DO 340 I = J, MIN( N, J+KD-1 ), 2
|
|
AB( LENJ-( I-J ), J ) = -TSCAL / REAL( KD+2 )
|
|
AB( 1, J ) = ONE
|
|
B( J ) = TEXP*( ONE-ULP )
|
|
IF( I.LT.MIN( N, J+KD-1 ) ) THEN
|
|
AB( LENJ-( I-J+1 ), I+1 ) = -( TSCAL /
|
|
$ REAL( KD+2 ) ) / REAL( KD+3 )
|
|
AB( 1, I+1 ) = ONE
|
|
B( I+1 ) = TEXP*REAL( ( KD+1 )*( KD+1 )+KD )
|
|
END IF
|
|
TEXP = TEXP*TWO
|
|
340 CONTINUE
|
|
B( MIN( N, J+KD-1 ) ) = ( REAL( KD+2 ) /
|
|
$ REAL( KD+3 ) )*TSCAL
|
|
350 CONTINUE
|
|
END IF
|
|
ELSE
|
|
DO 360 J = 1, N
|
|
AB( 1, J ) = ONE
|
|
B( J ) = REAL( J )
|
|
360 CONTINUE
|
|
END IF
|
|
*
|
|
ELSE IF( IMAT.EQ.17 ) THEN
|
|
*
|
|
* Type 17: Generate a unit triangular matrix with elements
|
|
* between -1 and 1, and make the right hand side large so that it
|
|
* requires scaling.
|
|
*
|
|
IF( UPPER ) THEN
|
|
DO 370 J = 1, N
|
|
LENJ = MIN( J-1, KD )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( KD+1-LENJ, J ) )
|
|
AB( KD+1, J ) = REAL( J )
|
|
370 CONTINUE
|
|
ELSE
|
|
DO 380 J = 1, N
|
|
LENJ = MIN( N-J, KD )
|
|
IF( LENJ.GT.0 )
|
|
$ CALL SLARNV( 2, ISEED, LENJ, AB( 2, J ) )
|
|
AB( 1, J ) = REAL( J )
|
|
380 CONTINUE
|
|
END IF
|
|
*
|
|
* Set the right hand side so that the largest value is BIGNUM.
|
|
*
|
|
CALL SLARNV( 2, ISEED, N, B )
|
|
IY = ISAMAX( N, B, 1 )
|
|
BNORM = ABS( B( IY ) )
|
|
BSCAL = BIGNUM / MAX( ONE, BNORM )
|
|
CALL SSCAL( N, BSCAL, B, 1 )
|
|
*
|
|
ELSE IF( IMAT.EQ.18 ) THEN
|
|
*
|
|
* Type 18: Generate a triangular matrix with elements between
|
|
* BIGNUM/KD and BIGNUM so that at least one of the column
|
|
* norms will exceed BIGNUM.
|
|
*
|
|
TLEFT = BIGNUM / MAX( ONE, REAL( KD ) )
|
|
TSCAL = BIGNUM*( REAL( KD ) / REAL( KD+1 ) )
|
|
IF( UPPER ) THEN
|
|
DO 400 J = 1, N
|
|
LENJ = MIN( J, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
|
|
DO 390 I = KD + 2 - LENJ, KD + 1
|
|
AB( I, J ) = SIGN( TLEFT, AB( I, J ) ) +
|
|
$ TSCAL*AB( I, J )
|
|
390 CONTINUE
|
|
400 CONTINUE
|
|
ELSE
|
|
DO 420 J = 1, N
|
|
LENJ = MIN( N-J+1, KD+1 )
|
|
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
|
|
DO 410 I = 1, LENJ
|
|
AB( I, J ) = SIGN( TLEFT, AB( I, J ) ) +
|
|
$ TSCAL*AB( I, J )
|
|
410 CONTINUE
|
|
420 CONTINUE
|
|
END IF
|
|
CALL SLARNV( 2, ISEED, N, B )
|
|
CALL SSCAL( N, TWO, B, 1 )
|
|
END IF
|
|
*
|
|
* Flip the matrix if the transpose will be used.
|
|
*
|
|
IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
|
|
IF( UPPER ) THEN
|
|
DO 430 J = 1, N / 2
|
|
LENJ = MIN( N-2*J+1, KD+1 )
|
|
CALL SSWAP( LENJ, AB( KD+1, J ), LDAB-1,
|
|
$ AB( KD+2-LENJ, N-J+1 ), -1 )
|
|
430 CONTINUE
|
|
ELSE
|
|
DO 440 J = 1, N / 2
|
|
LENJ = MIN( N-2*J+1, KD+1 )
|
|
CALL SSWAP( LENJ, AB( 1, J ), 1, AB( LENJ, N-J+2-LENJ ),
|
|
$ -LDAB+1 )
|
|
440 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SLATTB
|
|
*
|
|
END
|
|
|