Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

615 lines
19 KiB

*> \brief \b ZDRVHP
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
* A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
* NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NMAX, NN, NOUT, NRHS
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NVAL( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
* $ WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVHP tests the driver routines ZHPSV and -SVX.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension
*> (NMAX*(NMAX+1)/2)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension
*> (NMAX*(NMAX+1)/2)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*> AINV is COMPLEX*16 array, dimension
*> (NMAX*(NMAX+1)/2)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension
*> (NMAX*max(2,NRHS))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
$ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
$ NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NMAX, NN, NOUT, NRHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NVAL( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
$ WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTYPES, NTESTS
PARAMETER ( NTYPES = 10, NTESTS = 6 )
INTEGER NFACT
PARAMETER ( NFACT = 2 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
CHARACTER DIST, FACT, PACKIT, TYPE, UPLO, XTYPE
CHARACTER*3 PATH
INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
$ IZERO, J, K, K1, KL, KU, LDA, MODE, N, NB,
$ NBMIN, NERRS, NFAIL, NIMAT, NPP, NRUN, NT
DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC
* ..
* .. Local Arrays ..
CHARACTER FACTS( NFACT )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
DOUBLE PRECISION DGET06, ZLANHP
EXTERNAL DGET06, ZLANHP
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZCOPY, ZERRVX,
$ ZGET04, ZHPSV, ZHPSVX, ZHPT01, ZHPTRF, ZHPTRI,
$ ZLACPY, ZLAIPD, ZLARHS, ZLASET, ZLATB4, ZLATMS,
$ ZPPT02, ZPPT05
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA FACTS / 'F', 'N' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Z'
PATH( 2: 3 ) = 'HP'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL ZERRVX( PATH, NOUT )
INFOT = 0
*
* Set the block size and minimum block size for testing.
*
NB = 1
NBMIN = 2
CALL XLAENV( 1, NB )
CALL XLAENV( 2, NBMIN )
*
* Do for each value of N in NVAL
*
DO 180 IN = 1, NN
N = NVAL( IN )
LDA = MAX( N, 1 )
NPP = N*( N+1 ) / 2
XTYPE = 'N'
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 170 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 170
*
* Skip types 3, 4, 5, or 6 if the matrix size is too small.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.6
IF( ZEROT .AND. N.LT.IMAT-2 )
$ GO TO 170
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 160 IUPLO = 1, 2
IF( IUPLO.EQ.1 ) THEN
UPLO = 'U'
PACKIT = 'C'
ELSE
UPLO = 'L'
PACKIT = 'R'
END IF
*
* Set up parameters with ZLATB4 and generate a test matrix
* with ZLATMS.
*
CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
$ INFO )
*
* Check error code from ZLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, -1,
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 160
END IF
*
* For types 3-6, zero one or more rows and columns of the
* matrix to test that INFO is returned correctly.
*
IF( ZEROT ) THEN
IF( IMAT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
*
IF( IMAT.LT.6 ) THEN
*
* Set row and column IZERO to zero.
*
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*IZERO / 2
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = ZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = ZERO
IOFF = IOFF + I
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = ZERO
IOFF = IOFF + N - I
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = ZERO
50 CONTINUE
END IF
ELSE
IOFF = 0
IF( IUPLO.EQ.1 ) THEN
*
* Set the first IZERO rows and columns to zero.
*
DO 70 J = 1, N
I2 = MIN( J, IZERO )
DO 60 I = 1, I2
A( IOFF+I ) = ZERO
60 CONTINUE
IOFF = IOFF + J
70 CONTINUE
ELSE
*
* Set the last IZERO rows and columns to zero.
*
DO 90 J = 1, N
I1 = MAX( J, IZERO )
DO 80 I = I1, N
A( IOFF+I ) = ZERO
80 CONTINUE
IOFF = IOFF + N - J
90 CONTINUE
END IF
END IF
ELSE
IZERO = 0
END IF
*
* Set the imaginary part of the diagonals.
*
IF( IUPLO.EQ.1 ) THEN
CALL ZLAIPD( N, A, 2, 1 )
ELSE
CALL ZLAIPD( N, A, N, -1 )
END IF
*
DO 150 IFACT = 1, NFACT
*
* Do first for FACT = 'F', then for other values.
*
FACT = FACTS( IFACT )
*
* Compute the condition number for comparison with
* the value returned by ZHPSVX.
*
IF( ZEROT ) THEN
IF( IFACT.EQ.1 )
$ GO TO 150
RCONDC = ZERO
*
ELSE IF( IFACT.EQ.1 ) THEN
*
* Compute the 1-norm of A.
*
ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
*
* Factor the matrix A.
*
CALL ZCOPY( NPP, A, 1, AFAC, 1 )
CALL ZHPTRF( UPLO, N, AFAC, IWORK, INFO )
*
* Compute inv(A) and take its norm.
*
CALL ZCOPY( NPP, AFAC, 1, AINV, 1 )
CALL ZHPTRI( UPLO, N, AINV, IWORK, WORK, INFO )
AINVNM = ZLANHP( '1', UPLO, N, AINV, RWORK )
*
* Compute the 1-norm condition number of A.
*
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDC = ONE
ELSE
RCONDC = ( ONE / ANORM ) / AINVNM
END IF
END IF
*
* Form an exact solution and set the right hand side.
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU,
$ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED,
$ INFO )
XTYPE = 'C'
*
* --- Test ZHPSV ---
*
IF( IFACT.EQ.2 ) THEN
CALL ZCOPY( NPP, A, 1, AFAC, 1 )
CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
* Factor the matrix and solve the system using ZHPSV.
*
SRNAMT = 'ZHPSV '
CALL ZHPSV( UPLO, N, NRHS, AFAC, IWORK, X, LDA,
$ INFO )
*
* Adjust the expected value of INFO to account for
* pivoting.
*
K = IZERO
IF( K.GT.0 ) THEN
100 CONTINUE
IF( IWORK( K ).LT.0 ) THEN
IF( IWORK( K ).NE.-K ) THEN
K = -IWORK( K )
GO TO 100
END IF
ELSE IF( IWORK( K ).NE.K ) THEN
K = IWORK( K )
GO TO 100
END IF
END IF
*
* Check error code from ZHPSV .
*
IF( INFO.NE.K ) THEN
CALL ALAERH( PATH, 'ZHPSV ', INFO, K, UPLO, N,
$ N, -1, -1, NRHS, IMAT, NFAIL,
$ NERRS, NOUT )
GO TO 120
ELSE IF( INFO.NE.0 ) THEN
GO TO 120
END IF
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL ZHPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA,
$ RWORK, RESULT( 1 ) )
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL ZPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA,
$ RWORK, RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 3 ) )
NT = 3
*
* Print information about the tests that did not pass
* the threshold.
*
DO 110 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )'ZHPSV ', UPLO, N,
$ IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
110 CONTINUE
NRUN = NRUN + NT
120 CONTINUE
END IF
*
* --- Test ZHPSVX ---
*
IF( IFACT.EQ.2 .AND. NPP.GT.0 )
$ CALL ZLASET( 'Full', NPP, 1, DCMPLX( ZERO ),
$ DCMPLX( ZERO ), AFAC, NPP )
CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
$ DCMPLX( ZERO ), X, LDA )
*
* Solve the system and compute the condition number and
* error bounds using ZHPSVX.
*
SRNAMT = 'ZHPSVX'
CALL ZHPSVX( FACT, UPLO, N, NRHS, A, AFAC, IWORK, B,
$ LDA, X, LDA, RCOND, RWORK,
$ RWORK( NRHS+1 ), WORK, RWORK( 2*NRHS+1 ),
$ INFO )
*
* Adjust the expected value of INFO to account for
* pivoting.
*
K = IZERO
IF( K.GT.0 ) THEN
130 CONTINUE
IF( IWORK( K ).LT.0 ) THEN
IF( IWORK( K ).NE.-K ) THEN
K = -IWORK( K )
GO TO 130
END IF
ELSE IF( IWORK( K ).NE.K ) THEN
K = IWORK( K )
GO TO 130
END IF
END IF
*
* Check the error code from ZHPSVX.
*
IF( INFO.NE.K ) THEN
CALL ALAERH( PATH, 'ZHPSVX', INFO, K, FACT // UPLO,
$ N, N, -1, -1, NRHS, IMAT, NFAIL,
$ NERRS, NOUT )
GO TO 150
END IF
*
IF( INFO.EQ.0 ) THEN
IF( IFACT.GE.2 ) THEN
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL ZHPT01( UPLO, N, A, AFAC, IWORK, AINV, LDA,
$ RWORK( 2*NRHS+1 ), RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL ZPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA,
$ RWORK( 2*NRHS+1 ), RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 3 ) )
*
* Check the error bounds from iterative refinement.
*
CALL ZPPT05( UPLO, N, NRHS, A, B, LDA, X, LDA,
$ XACT, LDA, RWORK, RWORK( NRHS+1 ),
$ RESULT( 4 ) )
ELSE
K1 = 6
END IF
*
* Compare RCOND from ZHPSVX with the computed value
* in RCONDC.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did not pass
* the threshold.
*
DO 140 K = K1, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )'ZHPSVX', FACT, UPLO,
$ N, IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
140 CONTINUE
NRUN = NRUN + 7 - K1
*
150 CONTINUE
*
160 CONTINUE
170 CONTINUE
180 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', type ', I2,
$ ', test ', I2, ', ratio =', G12.5 )
9998 FORMAT( 1X, A, ', FACT=''', A1, ''', UPLO=''', A1, ''', N =', I5,
$ ', type ', I2, ', test ', I2, ', ratio =', G12.5 )
RETURN
*
* End of ZDRVHP
*
END