You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
692 lines
24 KiB
692 lines
24 KiB
*> \brief \b ZDRVPB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
|
|
* A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
|
|
* RWORK, NOUT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL TSTERR
|
|
* INTEGER NMAX, NN, NOUT, NRHS
|
|
* DOUBLE PRECISION THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER NVAL( * )
|
|
* DOUBLE PRECISION RWORK( * ), S( * )
|
|
* COMPLEX*16 A( * ), AFAC( * ), ASAV( * ), B( * ),
|
|
* $ BSAV( * ), WORK( * ), X( * ), XACT( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZDRVPB tests the driver routines ZPBSV and -SVX.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> The matrix types to be used for testing. Matrices of type j
|
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NN
|
|
*> \verbatim
|
|
*> NN is INTEGER
|
|
*> The number of values of N contained in the vector NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (NN)
|
|
*> The values of the matrix dimension N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand side vectors to be generated for
|
|
*> each linear system.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is DOUBLE PRECISION
|
|
*> The threshold value for the test ratios. A result is
|
|
*> included in the output file if RESULT >= THRESH. To have
|
|
*> every test ratio printed, use THRESH = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TSTERR
|
|
*> \verbatim
|
|
*> TSTERR is LOGICAL
|
|
*> Flag that indicates whether error exits are to be tested.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NMAX
|
|
*> \verbatim
|
|
*> NMAX is INTEGER
|
|
*> The maximum value permitted for N, used in dimensioning the
|
|
*> work arrays.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AFAC
|
|
*> \verbatim
|
|
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ASAV
|
|
*> \verbatim
|
|
*> ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX*16 array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BSAV
|
|
*> \verbatim
|
|
*> BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is COMPLEX*16 array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XACT
|
|
*> \verbatim
|
|
*> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION array, dimension (NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension
|
|
*> (NMAX*max(3,NRHS))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The unit number for output.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
|
|
$ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
|
|
$ RWORK, NOUT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL TSTERR
|
|
INTEGER NMAX, NN, NOUT, NRHS
|
|
DOUBLE PRECISION THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER NVAL( * )
|
|
DOUBLE PRECISION RWORK( * ), S( * )
|
|
COMPLEX*16 A( * ), AFAC( * ), ASAV( * ), B( * ),
|
|
$ BSAV( * ), WORK( * ), X( * ), XACT( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
INTEGER NTYPES, NTESTS
|
|
PARAMETER ( NTYPES = 8, NTESTS = 6 )
|
|
INTEGER NBW
|
|
PARAMETER ( NBW = 4 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
|
|
CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
|
|
CHARACTER*3 PATH
|
|
INTEGER I, I1, I2, IEQUED, IFACT, IKD, IMAT, IN, INFO,
|
|
$ IOFF, IUPLO, IW, IZERO, K, K1, KD, KL, KOFF,
|
|
$ KU, LDA, LDAB, MODE, N, NB, NBMIN, NERRS,
|
|
$ NFACT, NFAIL, NIMAT, NKD, NRUN, NT
|
|
DOUBLE PRECISION AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
|
|
$ ROLDC, SCOND
|
|
* ..
|
|
* .. Local Arrays ..
|
|
CHARACTER EQUEDS( 2 ), FACTS( 3 )
|
|
INTEGER ISEED( 4 ), ISEEDY( 4 ), KDVAL( NBW )
|
|
DOUBLE PRECISION RESULT( NTESTS )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
DOUBLE PRECISION DGET06, ZLANGE, ZLANHB
|
|
EXTERNAL LSAME, DGET06, ZLANGE, ZLANHB
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZCOPY, ZERRVX,
|
|
$ ZGET04, ZLACPY, ZLAIPD, ZLAQHB, ZLARHS, ZLASET,
|
|
$ ZLATB4, ZLATMS, ZPBEQU, ZPBSV, ZPBSVX, ZPBT01,
|
|
$ ZPBT02, ZPBT05, ZPBTRF, ZPBTRS, ZSWAP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DCMPLX, MAX, MIN
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
LOGICAL LERR, OK
|
|
CHARACTER*32 SRNAMT
|
|
INTEGER INFOT, NUNIT
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
|
COMMON / SRNAMC / SRNAMT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA ISEEDY / 1988, 1989, 1990, 1991 /
|
|
DATA FACTS / 'F', 'N', 'E' / , EQUEDS / 'N', 'Y' /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Initialize constants and the random number seed.
|
|
*
|
|
PATH( 1: 1 ) = 'Zomplex precision'
|
|
PATH( 2: 3 ) = 'PB'
|
|
NRUN = 0
|
|
NFAIL = 0
|
|
NERRS = 0
|
|
DO 10 I = 1, 4
|
|
ISEED( I ) = ISEEDY( I )
|
|
10 CONTINUE
|
|
*
|
|
* Test the error exits
|
|
*
|
|
IF( TSTERR )
|
|
$ CALL ZERRVX( PATH, NOUT )
|
|
INFOT = 0
|
|
KDVAL( 1 ) = 0
|
|
*
|
|
* Set the block size and minimum block size for testing.
|
|
*
|
|
NB = 1
|
|
NBMIN = 2
|
|
CALL XLAENV( 1, NB )
|
|
CALL XLAENV( 2, NBMIN )
|
|
*
|
|
* Do for each value of N in NVAL
|
|
*
|
|
DO 110 IN = 1, NN
|
|
N = NVAL( IN )
|
|
LDA = MAX( N, 1 )
|
|
XTYPE = 'N'
|
|
*
|
|
* Set limits on the number of loop iterations.
|
|
*
|
|
NKD = MAX( 1, MIN( N, 4 ) )
|
|
NIMAT = NTYPES
|
|
IF( N.EQ.0 )
|
|
$ NIMAT = 1
|
|
*
|
|
KDVAL( 2 ) = N + ( N+1 ) / 4
|
|
KDVAL( 3 ) = ( 3*N-1 ) / 4
|
|
KDVAL( 4 ) = ( N+1 ) / 4
|
|
*
|
|
DO 100 IKD = 1, NKD
|
|
*
|
|
* Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
|
|
* makes it easier to skip redundant values for small values
|
|
* of N.
|
|
*
|
|
KD = KDVAL( IKD )
|
|
LDAB = KD + 1
|
|
*
|
|
* Do first for UPLO = 'U', then for UPLO = 'L'
|
|
*
|
|
DO 90 IUPLO = 1, 2
|
|
KOFF = 1
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
UPLO = 'U'
|
|
PACKIT = 'Q'
|
|
KOFF = MAX( 1, KD+2-N )
|
|
ELSE
|
|
UPLO = 'L'
|
|
PACKIT = 'B'
|
|
END IF
|
|
*
|
|
DO 80 IMAT = 1, NIMAT
|
|
*
|
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
|
*
|
|
IF( .NOT.DOTYPE( IMAT ) )
|
|
$ GO TO 80
|
|
*
|
|
* Skip types 2, 3, or 4 if the matrix size is too small.
|
|
*
|
|
ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
|
|
IF( ZEROT .AND. N.LT.IMAT-1 )
|
|
$ GO TO 80
|
|
*
|
|
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
|
|
*
|
|
* Set up parameters with ZLATB4 and generate a test
|
|
* matrix with ZLATMS.
|
|
*
|
|
CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
|
|
$ MODE, CNDNUM, DIST )
|
|
*
|
|
SRNAMT = 'ZLATMS'
|
|
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
|
|
$ CNDNUM, ANORM, KD, KD, PACKIT,
|
|
$ A( KOFF ), LDAB, WORK, INFO )
|
|
*
|
|
* Check error code from ZLATMS.
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N,
|
|
$ N, -1, -1, -1, IMAT, NFAIL, NERRS,
|
|
$ NOUT )
|
|
GO TO 80
|
|
END IF
|
|
ELSE IF( IZERO.GT.0 ) THEN
|
|
*
|
|
* Use the same matrix for types 3 and 4 as for type
|
|
* 2 by copying back the zeroed out column,
|
|
*
|
|
IW = 2*LDA + 1
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
IOFF = ( IZERO-1 )*LDAB + KD + 1
|
|
CALL ZCOPY( IZERO-I1, WORK( IW ), 1,
|
|
$ A( IOFF-IZERO+I1 ), 1 )
|
|
IW = IW + IZERO - I1
|
|
CALL ZCOPY( I2-IZERO+1, WORK( IW ), 1,
|
|
$ A( IOFF ), MAX( LDAB-1, 1 ) )
|
|
ELSE
|
|
IOFF = ( I1-1 )*LDAB + 1
|
|
CALL ZCOPY( IZERO-I1, WORK( IW ), 1,
|
|
$ A( IOFF+IZERO-I1 ),
|
|
$ MAX( LDAB-1, 1 ) )
|
|
IOFF = ( IZERO-1 )*LDAB + 1
|
|
IW = IW + IZERO - I1
|
|
CALL ZCOPY( I2-IZERO+1, WORK( IW ), 1,
|
|
$ A( IOFF ), 1 )
|
|
END IF
|
|
END IF
|
|
*
|
|
* For types 2-4, zero one row and column of the matrix
|
|
* to test that INFO is returned correctly.
|
|
*
|
|
IZERO = 0
|
|
IF( ZEROT ) THEN
|
|
IF( IMAT.EQ.2 ) THEN
|
|
IZERO = 1
|
|
ELSE IF( IMAT.EQ.3 ) THEN
|
|
IZERO = N
|
|
ELSE
|
|
IZERO = N / 2 + 1
|
|
END IF
|
|
*
|
|
* Save the zeroed out row and column in WORK(*,3)
|
|
*
|
|
IW = 2*LDA
|
|
DO 20 I = 1, MIN( 2*KD+1, N )
|
|
WORK( IW+I ) = ZERO
|
|
20 CONTINUE
|
|
IW = IW + 1
|
|
I1 = MAX( IZERO-KD, 1 )
|
|
I2 = MIN( IZERO+KD, N )
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
IOFF = ( IZERO-1 )*LDAB + KD + 1
|
|
CALL ZSWAP( IZERO-I1, A( IOFF-IZERO+I1 ), 1,
|
|
$ WORK( IW ), 1 )
|
|
IW = IW + IZERO - I1
|
|
CALL ZSWAP( I2-IZERO+1, A( IOFF ),
|
|
$ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
|
|
ELSE
|
|
IOFF = ( I1-1 )*LDAB + 1
|
|
CALL ZSWAP( IZERO-I1, A( IOFF+IZERO-I1 ),
|
|
$ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
|
|
IOFF = ( IZERO-1 )*LDAB + 1
|
|
IW = IW + IZERO - I1
|
|
CALL ZSWAP( I2-IZERO+1, A( IOFF ), 1,
|
|
$ WORK( IW ), 1 )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Set the imaginary part of the diagonals.
|
|
*
|
|
IF( IUPLO.EQ.1 ) THEN
|
|
CALL ZLAIPD( N, A( KD+1 ), LDAB, 0 )
|
|
ELSE
|
|
CALL ZLAIPD( N, A( 1 ), LDAB, 0 )
|
|
END IF
|
|
*
|
|
* Save a copy of the matrix A in ASAV.
|
|
*
|
|
CALL ZLACPY( 'Full', KD+1, N, A, LDAB, ASAV, LDAB )
|
|
*
|
|
DO 70 IEQUED = 1, 2
|
|
EQUED = EQUEDS( IEQUED )
|
|
IF( IEQUED.EQ.1 ) THEN
|
|
NFACT = 3
|
|
ELSE
|
|
NFACT = 1
|
|
END IF
|
|
*
|
|
DO 60 IFACT = 1, NFACT
|
|
FACT = FACTS( IFACT )
|
|
PREFAC = LSAME( FACT, 'F' )
|
|
NOFACT = LSAME( FACT, 'N' )
|
|
EQUIL = LSAME( FACT, 'E' )
|
|
*
|
|
IF( ZEROT ) THEN
|
|
IF( PREFAC )
|
|
$ GO TO 60
|
|
RCONDC = ZERO
|
|
*
|
|
ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN
|
|
*
|
|
* Compute the condition number for comparison
|
|
* with the value returned by ZPBSVX (FACT =
|
|
* 'N' reuses the condition number from the
|
|
* previous iteration with FACT = 'F').
|
|
*
|
|
CALL ZLACPY( 'Full', KD+1, N, ASAV, LDAB,
|
|
$ AFAC, LDAB )
|
|
IF( EQUIL .OR. IEQUED.GT.1 ) THEN
|
|
*
|
|
* Compute row and column scale factors to
|
|
* equilibrate the matrix A.
|
|
*
|
|
CALL ZPBEQU( UPLO, N, KD, AFAC, LDAB, S,
|
|
$ SCOND, AMAX, INFO )
|
|
IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
|
|
IF( IEQUED.GT.1 )
|
|
$ SCOND = ZERO
|
|
*
|
|
* Equilibrate the matrix.
|
|
*
|
|
CALL ZLAQHB( UPLO, N, KD, AFAC, LDAB,
|
|
$ S, SCOND, AMAX, EQUED )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Save the condition number of the
|
|
* non-equilibrated system for use in ZGET04.
|
|
*
|
|
IF( EQUIL )
|
|
$ ROLDC = RCONDC
|
|
*
|
|
* Compute the 1-norm of A.
|
|
*
|
|
ANORM = ZLANHB( '1', UPLO, N, KD, AFAC, LDAB,
|
|
$ RWORK )
|
|
*
|
|
* Factor the matrix A.
|
|
*
|
|
CALL ZPBTRF( UPLO, N, KD, AFAC, LDAB, INFO )
|
|
*
|
|
* Form the inverse of A.
|
|
*
|
|
CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ),
|
|
$ DCMPLX( ONE ), A, LDA )
|
|
SRNAMT = 'ZPBTRS'
|
|
CALL ZPBTRS( UPLO, N, KD, N, AFAC, LDAB, A,
|
|
$ LDA, INFO )
|
|
*
|
|
* Compute the 1-norm condition number of A.
|
|
*
|
|
AINVNM = ZLANGE( '1', N, N, A, LDA, RWORK )
|
|
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
|
RCONDC = ONE
|
|
ELSE
|
|
RCONDC = ( ONE / ANORM ) / AINVNM
|
|
END IF
|
|
END IF
|
|
*
|
|
* Restore the matrix A.
|
|
*
|
|
CALL ZLACPY( 'Full', KD+1, N, ASAV, LDAB, A,
|
|
$ LDAB )
|
|
*
|
|
* Form an exact solution and set the right hand
|
|
* side.
|
|
*
|
|
SRNAMT = 'ZLARHS'
|
|
CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KD,
|
|
$ KD, NRHS, A, LDAB, XACT, LDA, B,
|
|
$ LDA, ISEED, INFO )
|
|
XTYPE = 'C'
|
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, BSAV,
|
|
$ LDA )
|
|
*
|
|
IF( NOFACT ) THEN
|
|
*
|
|
* --- Test ZPBSV ---
|
|
*
|
|
* Compute the L*L' or U'*U factorization of the
|
|
* matrix and solve the system.
|
|
*
|
|
CALL ZLACPY( 'Full', KD+1, N, A, LDAB, AFAC,
|
|
$ LDAB )
|
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, X,
|
|
$ LDA )
|
|
*
|
|
SRNAMT = 'ZPBSV '
|
|
CALL ZPBSV( UPLO, N, KD, NRHS, AFAC, LDAB, X,
|
|
$ LDA, INFO )
|
|
*
|
|
* Check error code from ZPBSV .
|
|
*
|
|
IF( INFO.NE.IZERO ) THEN
|
|
CALL ALAERH( PATH, 'ZPBSV ', INFO, IZERO,
|
|
$ UPLO, N, N, KD, KD, NRHS,
|
|
$ IMAT, NFAIL, NERRS, NOUT )
|
|
GO TO 40
|
|
ELSE IF( INFO.NE.0 ) THEN
|
|
GO TO 40
|
|
END IF
|
|
*
|
|
* Reconstruct matrix from factors and compute
|
|
* residual.
|
|
*
|
|
CALL ZPBT01( UPLO, N, KD, A, LDAB, AFAC,
|
|
$ LDAB, RWORK, RESULT( 1 ) )
|
|
*
|
|
* Compute residual of the computed solution.
|
|
*
|
|
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK,
|
|
$ LDA )
|
|
CALL ZPBT02( UPLO, N, KD, NRHS, A, LDAB, X,
|
|
$ LDA, WORK, LDA, RWORK,
|
|
$ RESULT( 2 ) )
|
|
*
|
|
* Check solution from generated exact solution.
|
|
*
|
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
|
|
$ RCONDC, RESULT( 3 ) )
|
|
NT = 3
|
|
*
|
|
* Print information about the tests that did
|
|
* not pass the threshold.
|
|
*
|
|
DO 30 K = 1, NT
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9999 )'ZPBSV ',
|
|
$ UPLO, N, KD, IMAT, K, RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
30 CONTINUE
|
|
NRUN = NRUN + NT
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
* --- Test ZPBSVX ---
|
|
*
|
|
IF( .NOT.PREFAC )
|
|
$ CALL ZLASET( 'Full', KD+1, N, DCMPLX( ZERO ),
|
|
$ DCMPLX( ZERO ), AFAC, LDAB )
|
|
CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
|
|
$ DCMPLX( ZERO ), X, LDA )
|
|
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
|
|
*
|
|
* Equilibrate the matrix if FACT='F' and
|
|
* EQUED='Y'
|
|
*
|
|
CALL ZLAQHB( UPLO, N, KD, A, LDAB, S, SCOND,
|
|
$ AMAX, EQUED )
|
|
END IF
|
|
*
|
|
* Solve the system and compute the condition
|
|
* number and error bounds using ZPBSVX.
|
|
*
|
|
SRNAMT = 'ZPBSVX'
|
|
CALL ZPBSVX( FACT, UPLO, N, KD, NRHS, A, LDAB,
|
|
$ AFAC, LDAB, EQUED, S, B, LDA, X,
|
|
$ LDA, RCOND, RWORK, RWORK( NRHS+1 ),
|
|
$ WORK, RWORK( 2*NRHS+1 ), INFO )
|
|
*
|
|
* Check the error code from ZPBSVX.
|
|
*
|
|
IF( INFO.NE.IZERO ) THEN
|
|
CALL ALAERH( PATH, 'ZPBSVX', INFO, IZERO,
|
|
$ FACT // UPLO, N, N, KD, KD,
|
|
$ NRHS, IMAT, NFAIL, NERRS, NOUT )
|
|
GO TO 60
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( .NOT.PREFAC ) THEN
|
|
*
|
|
* Reconstruct matrix from factors and
|
|
* compute residual.
|
|
*
|
|
CALL ZPBT01( UPLO, N, KD, A, LDAB, AFAC,
|
|
$ LDAB, RWORK( 2*NRHS+1 ),
|
|
$ RESULT( 1 ) )
|
|
K1 = 1
|
|
ELSE
|
|
K1 = 2
|
|
END IF
|
|
*
|
|
* Compute residual of the computed solution.
|
|
*
|
|
CALL ZLACPY( 'Full', N, NRHS, BSAV, LDA,
|
|
$ WORK, LDA )
|
|
CALL ZPBT02( UPLO, N, KD, NRHS, ASAV, LDAB,
|
|
$ X, LDA, WORK, LDA,
|
|
$ RWORK( 2*NRHS+1 ), RESULT( 2 ) )
|
|
*
|
|
* Check solution from generated exact solution.
|
|
*
|
|
IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
|
|
$ 'N' ) ) ) THEN
|
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
|
|
$ RCONDC, RESULT( 3 ) )
|
|
ELSE
|
|
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
|
|
$ ROLDC, RESULT( 3 ) )
|
|
END IF
|
|
*
|
|
* Check the error bounds from iterative
|
|
* refinement.
|
|
*
|
|
CALL ZPBT05( UPLO, N, KD, NRHS, ASAV, LDAB,
|
|
$ B, LDA, X, LDA, XACT, LDA,
|
|
$ RWORK, RWORK( NRHS+1 ),
|
|
$ RESULT( 4 ) )
|
|
ELSE
|
|
K1 = 6
|
|
END IF
|
|
*
|
|
* Compare RCOND from ZPBSVX with the computed
|
|
* value in RCONDC.
|
|
*
|
|
RESULT( 6 ) = DGET06( RCOND, RCONDC )
|
|
*
|
|
* Print information about the tests that did not
|
|
* pass the threshold.
|
|
*
|
|
DO 50 K = K1, 6
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
IF( PREFAC ) THEN
|
|
WRITE( NOUT, FMT = 9997 )'ZPBSVX',
|
|
$ FACT, UPLO, N, KD, EQUED, IMAT, K,
|
|
$ RESULT( K )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9998 )'ZPBSVX',
|
|
$ FACT, UPLO, N, KD, IMAT, K,
|
|
$ RESULT( K )
|
|
END IF
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
50 CONTINUE
|
|
NRUN = NRUN + 7 - K1
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
*
|
|
* Print a summary of the results.
|
|
*
|
|
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
|
*
|
|
9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', KD =', I5,
|
|
$ ', type ', I1, ', test(', I1, ')=', G12.5 )
|
|
9998 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
|
|
$ ', ... ), type ', I1, ', test(', I1, ')=', G12.5 )
|
|
9997 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
|
|
$ ', ... ), EQUED=''', A1, ''', type ', I1, ', test(', I1,
|
|
$ ')=', G12.5 )
|
|
RETURN
|
|
*
|
|
* End of ZDRVPB
|
|
*
|
|
END
|
|
|