Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

692 lines
24 KiB

*> \brief \b ZDRVPB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
* A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
* RWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NMAX, NN, NOUT, NRHS
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER NVAL( * )
* DOUBLE PRECISION RWORK( * ), S( * )
* COMPLEX*16 A( * ), AFAC( * ), ASAV( * ), B( * ),
* $ BSAV( * ), WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVPB tests the driver routines ZPBSV and -SVX.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for N, used in dimensioning the
*> work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*> ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*> BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (NMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension
*> (NMAX*max(3,NRHS))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
$ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
$ RWORK, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NMAX, NN, NOUT, NRHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER NVAL( * )
DOUBLE PRECISION RWORK( * ), S( * )
COMPLEX*16 A( * ), AFAC( * ), ASAV( * ), B( * ),
$ BSAV( * ), WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTYPES, NTESTS
PARAMETER ( NTYPES = 8, NTESTS = 6 )
INTEGER NBW
PARAMETER ( NBW = 4 )
* ..
* .. Local Scalars ..
LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
CHARACTER*3 PATH
INTEGER I, I1, I2, IEQUED, IFACT, IKD, IMAT, IN, INFO,
$ IOFF, IUPLO, IW, IZERO, K, K1, KD, KL, KOFF,
$ KU, LDA, LDAB, MODE, N, NB, NBMIN, NERRS,
$ NFACT, NFAIL, NIMAT, NKD, NRUN, NT
DOUBLE PRECISION AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
$ ROLDC, SCOND
* ..
* .. Local Arrays ..
CHARACTER EQUEDS( 2 ), FACTS( 3 )
INTEGER ISEED( 4 ), ISEEDY( 4 ), KDVAL( NBW )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DGET06, ZLANGE, ZLANHB
EXTERNAL LSAME, DGET06, ZLANGE, ZLANHB
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZCOPY, ZERRVX,
$ ZGET04, ZLACPY, ZLAIPD, ZLAQHB, ZLARHS, ZLASET,
$ ZLATB4, ZLATMS, ZPBEQU, ZPBSV, ZPBSVX, ZPBT01,
$ ZPBT02, ZPBT05, ZPBTRF, ZPBTRS, ZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA FACTS / 'F', 'N', 'E' / , EQUEDS / 'N', 'Y' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Zomplex precision'
PATH( 2: 3 ) = 'PB'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL ZERRVX( PATH, NOUT )
INFOT = 0
KDVAL( 1 ) = 0
*
* Set the block size and minimum block size for testing.
*
NB = 1
NBMIN = 2
CALL XLAENV( 1, NB )
CALL XLAENV( 2, NBMIN )
*
* Do for each value of N in NVAL
*
DO 110 IN = 1, NN
N = NVAL( IN )
LDA = MAX( N, 1 )
XTYPE = 'N'
*
* Set limits on the number of loop iterations.
*
NKD = MAX( 1, MIN( N, 4 ) )
NIMAT = NTYPES
IF( N.EQ.0 )
$ NIMAT = 1
*
KDVAL( 2 ) = N + ( N+1 ) / 4
KDVAL( 3 ) = ( 3*N-1 ) / 4
KDVAL( 4 ) = ( N+1 ) / 4
*
DO 100 IKD = 1, NKD
*
* Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
* makes it easier to skip redundant values for small values
* of N.
*
KD = KDVAL( IKD )
LDAB = KD + 1
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 90 IUPLO = 1, 2
KOFF = 1
IF( IUPLO.EQ.1 ) THEN
UPLO = 'U'
PACKIT = 'Q'
KOFF = MAX( 1, KD+2-N )
ELSE
UPLO = 'L'
PACKIT = 'B'
END IF
*
DO 80 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 80
*
* Skip types 2, 3, or 4 if the matrix size is too small.
*
ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
IF( ZEROT .AND. N.LT.IMAT-1 )
$ GO TO 80
*
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 1 ) ) THEN
*
* Set up parameters with ZLATB4 and generate a test
* matrix with ZLATMS.
*
CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
$ MODE, CNDNUM, DIST )
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KD, KD, PACKIT,
$ A( KOFF ), LDAB, WORK, INFO )
*
* Check error code from ZLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N,
$ N, -1, -1, -1, IMAT, NFAIL, NERRS,
$ NOUT )
GO TO 80
END IF
ELSE IF( IZERO.GT.0 ) THEN
*
* Use the same matrix for types 3 and 4 as for type
* 2 by copying back the zeroed out column,
*
IW = 2*LDA + 1
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*LDAB + KD + 1
CALL ZCOPY( IZERO-I1, WORK( IW ), 1,
$ A( IOFF-IZERO+I1 ), 1 )
IW = IW + IZERO - I1
CALL ZCOPY( I2-IZERO+1, WORK( IW ), 1,
$ A( IOFF ), MAX( LDAB-1, 1 ) )
ELSE
IOFF = ( I1-1 )*LDAB + 1
CALL ZCOPY( IZERO-I1, WORK( IW ), 1,
$ A( IOFF+IZERO-I1 ),
$ MAX( LDAB-1, 1 ) )
IOFF = ( IZERO-1 )*LDAB + 1
IW = IW + IZERO - I1
CALL ZCOPY( I2-IZERO+1, WORK( IW ), 1,
$ A( IOFF ), 1 )
END IF
END IF
*
* For types 2-4, zero one row and column of the matrix
* to test that INFO is returned correctly.
*
IZERO = 0
IF( ZEROT ) THEN
IF( IMAT.EQ.2 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.3 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
*
* Save the zeroed out row and column in WORK(*,3)
*
IW = 2*LDA
DO 20 I = 1, MIN( 2*KD+1, N )
WORK( IW+I ) = ZERO
20 CONTINUE
IW = IW + 1
I1 = MAX( IZERO-KD, 1 )
I2 = MIN( IZERO+KD, N )
*
IF( IUPLO.EQ.1 ) THEN
IOFF = ( IZERO-1 )*LDAB + KD + 1
CALL ZSWAP( IZERO-I1, A( IOFF-IZERO+I1 ), 1,
$ WORK( IW ), 1 )
IW = IW + IZERO - I1
CALL ZSWAP( I2-IZERO+1, A( IOFF ),
$ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
ELSE
IOFF = ( I1-1 )*LDAB + 1
CALL ZSWAP( IZERO-I1, A( IOFF+IZERO-I1 ),
$ MAX( LDAB-1, 1 ), WORK( IW ), 1 )
IOFF = ( IZERO-1 )*LDAB + 1
IW = IW + IZERO - I1
CALL ZSWAP( I2-IZERO+1, A( IOFF ), 1,
$ WORK( IW ), 1 )
END IF
END IF
*
* Set the imaginary part of the diagonals.
*
IF( IUPLO.EQ.1 ) THEN
CALL ZLAIPD( N, A( KD+1 ), LDAB, 0 )
ELSE
CALL ZLAIPD( N, A( 1 ), LDAB, 0 )
END IF
*
* Save a copy of the matrix A in ASAV.
*
CALL ZLACPY( 'Full', KD+1, N, A, LDAB, ASAV, LDAB )
*
DO 70 IEQUED = 1, 2
EQUED = EQUEDS( IEQUED )
IF( IEQUED.EQ.1 ) THEN
NFACT = 3
ELSE
NFACT = 1
END IF
*
DO 60 IFACT = 1, NFACT
FACT = FACTS( IFACT )
PREFAC = LSAME( FACT, 'F' )
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
*
IF( ZEROT ) THEN
IF( PREFAC )
$ GO TO 60
RCONDC = ZERO
*
ELSE IF( .NOT.LSAME( FACT, 'N' ) ) THEN
*
* Compute the condition number for comparison
* with the value returned by ZPBSVX (FACT =
* 'N' reuses the condition number from the
* previous iteration with FACT = 'F').
*
CALL ZLACPY( 'Full', KD+1, N, ASAV, LDAB,
$ AFAC, LDAB )
IF( EQUIL .OR. IEQUED.GT.1 ) THEN
*
* Compute row and column scale factors to
* equilibrate the matrix A.
*
CALL ZPBEQU( UPLO, N, KD, AFAC, LDAB, S,
$ SCOND, AMAX, INFO )
IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
IF( IEQUED.GT.1 )
$ SCOND = ZERO
*
* Equilibrate the matrix.
*
CALL ZLAQHB( UPLO, N, KD, AFAC, LDAB,
$ S, SCOND, AMAX, EQUED )
END IF
END IF
*
* Save the condition number of the
* non-equilibrated system for use in ZGET04.
*
IF( EQUIL )
$ ROLDC = RCONDC
*
* Compute the 1-norm of A.
*
ANORM = ZLANHB( '1', UPLO, N, KD, AFAC, LDAB,
$ RWORK )
*
* Factor the matrix A.
*
CALL ZPBTRF( UPLO, N, KD, AFAC, LDAB, INFO )
*
* Form the inverse of A.
*
CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ),
$ DCMPLX( ONE ), A, LDA )
SRNAMT = 'ZPBTRS'
CALL ZPBTRS( UPLO, N, KD, N, AFAC, LDAB, A,
$ LDA, INFO )
*
* Compute the 1-norm condition number of A.
*
AINVNM = ZLANGE( '1', N, N, A, LDA, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDC = ONE
ELSE
RCONDC = ( ONE / ANORM ) / AINVNM
END IF
END IF
*
* Restore the matrix A.
*
CALL ZLACPY( 'Full', KD+1, N, ASAV, LDAB, A,
$ LDAB )
*
* Form an exact solution and set the right hand
* side.
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( PATH, XTYPE, UPLO, ' ', N, N, KD,
$ KD, NRHS, A, LDAB, XACT, LDA, B,
$ LDA, ISEED, INFO )
XTYPE = 'C'
CALL ZLACPY( 'Full', N, NRHS, B, LDA, BSAV,
$ LDA )
*
IF( NOFACT ) THEN
*
* --- Test ZPBSV ---
*
* Compute the L*L' or U'*U factorization of the
* matrix and solve the system.
*
CALL ZLACPY( 'Full', KD+1, N, A, LDAB, AFAC,
$ LDAB )
CALL ZLACPY( 'Full', N, NRHS, B, LDA, X,
$ LDA )
*
SRNAMT = 'ZPBSV '
CALL ZPBSV( UPLO, N, KD, NRHS, AFAC, LDAB, X,
$ LDA, INFO )
*
* Check error code from ZPBSV .
*
IF( INFO.NE.IZERO ) THEN
CALL ALAERH( PATH, 'ZPBSV ', INFO, IZERO,
$ UPLO, N, N, KD, KD, NRHS,
$ IMAT, NFAIL, NERRS, NOUT )
GO TO 40
ELSE IF( INFO.NE.0 ) THEN
GO TO 40
END IF
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL ZPBT01( UPLO, N, KD, A, LDAB, AFAC,
$ LDAB, RWORK, RESULT( 1 ) )
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK,
$ LDA )
CALL ZPBT02( UPLO, N, KD, NRHS, A, LDAB, X,
$ LDA, WORK, LDA, RWORK,
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
$ RCONDC, RESULT( 3 ) )
NT = 3
*
* Print information about the tests that did
* not pass the threshold.
*
DO 30 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )'ZPBSV ',
$ UPLO, N, KD, IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
30 CONTINUE
NRUN = NRUN + NT
40 CONTINUE
END IF
*
* --- Test ZPBSVX ---
*
IF( .NOT.PREFAC )
$ CALL ZLASET( 'Full', KD+1, N, DCMPLX( ZERO ),
$ DCMPLX( ZERO ), AFAC, LDAB )
CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
$ DCMPLX( ZERO ), X, LDA )
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
*
* Equilibrate the matrix if FACT='F' and
* EQUED='Y'
*
CALL ZLAQHB( UPLO, N, KD, A, LDAB, S, SCOND,
$ AMAX, EQUED )
END IF
*
* Solve the system and compute the condition
* number and error bounds using ZPBSVX.
*
SRNAMT = 'ZPBSVX'
CALL ZPBSVX( FACT, UPLO, N, KD, NRHS, A, LDAB,
$ AFAC, LDAB, EQUED, S, B, LDA, X,
$ LDA, RCOND, RWORK, RWORK( NRHS+1 ),
$ WORK, RWORK( 2*NRHS+1 ), INFO )
*
* Check the error code from ZPBSVX.
*
IF( INFO.NE.IZERO ) THEN
CALL ALAERH( PATH, 'ZPBSVX', INFO, IZERO,
$ FACT // UPLO, N, N, KD, KD,
$ NRHS, IMAT, NFAIL, NERRS, NOUT )
GO TO 60
END IF
*
IF( INFO.EQ.0 ) THEN
IF( .NOT.PREFAC ) THEN
*
* Reconstruct matrix from factors and
* compute residual.
*
CALL ZPBT01( UPLO, N, KD, A, LDAB, AFAC,
$ LDAB, RWORK( 2*NRHS+1 ),
$ RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, BSAV, LDA,
$ WORK, LDA )
CALL ZPBT02( UPLO, N, KD, NRHS, ASAV, LDAB,
$ X, LDA, WORK, LDA,
$ RWORK( 2*NRHS+1 ), RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
$ 'N' ) ) ) THEN
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
$ RCONDC, RESULT( 3 ) )
ELSE
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA,
$ ROLDC, RESULT( 3 ) )
END IF
*
* Check the error bounds from iterative
* refinement.
*
CALL ZPBT05( UPLO, N, KD, NRHS, ASAV, LDAB,
$ B, LDA, X, LDA, XACT, LDA,
$ RWORK, RWORK( NRHS+1 ),
$ RESULT( 4 ) )
ELSE
K1 = 6
END IF
*
* Compare RCOND from ZPBSVX with the computed
* value in RCONDC.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 50 K = K1, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9997 )'ZPBSVX',
$ FACT, UPLO, N, KD, EQUED, IMAT, K,
$ RESULT( K )
ELSE
WRITE( NOUT, FMT = 9998 )'ZPBSVX',
$ FACT, UPLO, N, KD, IMAT, K,
$ RESULT( K )
END IF
NFAIL = NFAIL + 1
END IF
50 CONTINUE
NRUN = NRUN + 7 - K1
60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
110 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A, ', UPLO=''', A1, ''', N =', I5, ', KD =', I5,
$ ', type ', I1, ', test(', I1, ')=', G12.5 )
9998 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
$ ', ... ), type ', I1, ', test(', I1, ')=', G12.5 )
9997 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ', I5, ', ', I5,
$ ', ... ), EQUED=''', A1, ''', type ', I1, ', test(', I1,
$ ')=', G12.5 )
RETURN
*
* End of ZDRVPB
*
END