Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

472 lines
15 KiB

*> \brief \b ZERRPO
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZERRPO( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZERRPO tests the error exits for the COMPLEX*16 routines
*> for Hermitian positive definite matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZERRPO( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER I, INFO, J
DOUBLE PRECISION ANRM, RCOND
* ..
* .. Local Arrays ..
DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX )
COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ W( 2*NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, ZPBCON, ZPBEQU, ZPBRFS, ZPBTF2,
$ ZPBTRF, ZPBTRS, ZPOCON, ZPOEQU, ZPORFS, ZPOTF2,
$ ZPOTRF, ZPOTRI, ZPOTRS, ZPPCON, ZPPEQU, ZPPRFS,
$ ZPPTRF, ZPPTRI, ZPPTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
$ -1.D0 / DBLE( I+J ) )
AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
$ -1.D0 / DBLE( I+J ) )
10 CONTINUE
B( J ) = 0.D0
R1( J ) = 0.D0
R2( J ) = 0.D0
W( J ) = 0.D0
X( J ) = 0.D0
20 CONTINUE
ANRM = 1.D0
OK = .TRUE.
*
* Test error exits of the routines that use the Cholesky
* decomposition of a Hermitian positive definite matrix.
*
IF( LSAMEN( 2, C2, 'PO' ) ) THEN
*
* ZPOTRF
*
SRNAMT = 'ZPOTRF'
INFOT = 1
CALL ZPOTRF( '/', 0, A, 1, INFO )
CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPOTRF( 'U', -1, A, 1, INFO )
CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZPOTRF( 'U', 2, A, 1, INFO )
CALL CHKXER( 'ZPOTRF', INFOT, NOUT, LERR, OK )
*
* ZPOTF2
*
SRNAMT = 'ZPOTF2'
INFOT = 1
CALL ZPOTF2( '/', 0, A, 1, INFO )
CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPOTF2( 'U', -1, A, 1, INFO )
CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZPOTF2( 'U', 2, A, 1, INFO )
CALL CHKXER( 'ZPOTF2', INFOT, NOUT, LERR, OK )
*
* ZPOTRI
*
SRNAMT = 'ZPOTRI'
INFOT = 1
CALL ZPOTRI( '/', 0, A, 1, INFO )
CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPOTRI( 'U', -1, A, 1, INFO )
CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZPOTRI( 'U', 2, A, 1, INFO )
CALL CHKXER( 'ZPOTRI', INFOT, NOUT, LERR, OK )
*
* ZPOTRS
*
SRNAMT = 'ZPOTRS'
INFOT = 1
CALL ZPOTRS( '/', 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPOTRS( 'U', -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPOTRS( 'U', 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZPOTRS( 'U', 2, 1, A, 1, B, 2, INFO )
CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZPOTRS( 'U', 2, 1, A, 2, B, 1, INFO )
CALL CHKXER( 'ZPOTRS', INFOT, NOUT, LERR, OK )
*
* ZPORFS
*
SRNAMT = 'ZPORFS'
INFOT = 1
CALL ZPORFS( '/', 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPORFS( 'U', -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPORFS( 'U', 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZPORFS( 'U', 2, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZPORFS( 'U', 2, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZPORFS( 'U', 2, 1, A, 2, AF, 2, B, 1, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZPORFS( 'U', 2, 1, A, 2, AF, 2, B, 2, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPORFS', INFOT, NOUT, LERR, OK )
*
* ZPOCON
*
SRNAMT = 'ZPOCON'
INFOT = 1
CALL ZPOCON( '/', 0, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPOCON( 'U', -1, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZPOCON( 'U', 2, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZPOCON( 'U', 1, A, 1, -ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPOCON', INFOT, NOUT, LERR, OK )
*
* ZPOEQU
*
SRNAMT = 'ZPOEQU'
INFOT = 1
CALL ZPOEQU( -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPOEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPOEQU( 2, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPOEQU', INFOT, NOUT, LERR, OK )
*
* Test error exits of the routines that use the Cholesky
* decomposition of a Hermitian positive definite packed matrix.
*
ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN
*
* ZPPTRF
*
SRNAMT = 'ZPPTRF'
INFOT = 1
CALL ZPPTRF( '/', 0, A, INFO )
CALL CHKXER( 'ZPPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPPTRF( 'U', -1, A, INFO )
CALL CHKXER( 'ZPPTRF', INFOT, NOUT, LERR, OK )
*
* ZPPTRI
*
SRNAMT = 'ZPPTRI'
INFOT = 1
CALL ZPPTRI( '/', 0, A, INFO )
CALL CHKXER( 'ZPPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPPTRI( 'U', -1, A, INFO )
CALL CHKXER( 'ZPPTRI', INFOT, NOUT, LERR, OK )
*
* ZPPTRS
*
SRNAMT = 'ZPPTRS'
INFOT = 1
CALL ZPPTRS( '/', 0, 0, A, B, 1, INFO )
CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPPTRS( 'U', -1, 0, A, B, 1, INFO )
CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPPTRS( 'U', 0, -1, A, B, 1, INFO )
CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZPPTRS( 'U', 2, 1, A, B, 1, INFO )
CALL CHKXER( 'ZPPTRS', INFOT, NOUT, LERR, OK )
*
* ZPPRFS
*
SRNAMT = 'ZPPRFS'
INFOT = 1
CALL ZPPRFS( '/', 0, 0, A, AF, B, 1, X, 1, R1, R2, W, R, INFO )
CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPPRFS( 'U', -1, 0, A, AF, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPPRFS( 'U', 0, -1, A, AF, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZPPRFS( 'U', 2, 1, A, AF, B, 1, X, 2, R1, R2, W, R, INFO )
CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZPPRFS( 'U', 2, 1, A, AF, B, 2, X, 1, R1, R2, W, R, INFO )
CALL CHKXER( 'ZPPRFS', INFOT, NOUT, LERR, OK )
*
* ZPPCON
*
SRNAMT = 'ZPPCON'
INFOT = 1
CALL ZPPCON( '/', 0, A, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPPCON( 'U', -1, A, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZPPCON( 'U', 1, A, -ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPPCON', INFOT, NOUT, LERR, OK )
*
* ZPPEQU
*
SRNAMT = 'ZPPEQU'
INFOT = 1
CALL ZPPEQU( '/', 0, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPPEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPPEQU( 'U', -1, A, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPPEQU', INFOT, NOUT, LERR, OK )
*
* Test error exits of the routines that use the Cholesky
* decomposition of a Hermitian positive definite band matrix.
*
ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
* ZPBTRF
*
SRNAMT = 'ZPBTRF'
INFOT = 1
CALL ZPBTRF( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPBTRF( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPBTRF( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZPBTRF( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'ZPBTRF', INFOT, NOUT, LERR, OK )
*
* ZPBTF2
*
SRNAMT = 'ZPBTF2'
INFOT = 1
CALL ZPBTF2( '/', 0, 0, A, 1, INFO )
CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPBTF2( 'U', -1, 0, A, 1, INFO )
CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPBTF2( 'U', 1, -1, A, 1, INFO )
CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZPBTF2( 'U', 2, 1, A, 1, INFO )
CALL CHKXER( 'ZPBTF2', INFOT, NOUT, LERR, OK )
*
* ZPBTRS
*
SRNAMT = 'ZPBTRS'
INFOT = 1
CALL ZPBTRS( '/', 0, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPBTRS( 'U', -1, 0, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPBTRS( 'U', 1, -1, 0, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZPBTRS( 'U', 0, 0, -1, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZPBTRS( 'U', 2, 1, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZPBTRS( 'U', 2, 0, 1, A, 1, B, 1, INFO )
CALL CHKXER( 'ZPBTRS', INFOT, NOUT, LERR, OK )
*
* ZPBRFS
*
SRNAMT = 'ZPBRFS'
INFOT = 1
CALL ZPBRFS( '/', 0, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPBRFS( 'U', -1, 0, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPBRFS( 'U', 1, -1, 0, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZPBRFS( 'U', 0, 0, -1, A, 1, AF, 1, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZPBRFS( 'U', 2, 1, 1, A, 1, AF, 2, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZPBRFS( 'U', 2, 1, 1, A, 2, AF, 1, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 1, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZPBRFS( 'U', 2, 0, 1, A, 1, AF, 1, B, 2, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZPBRFS', INFOT, NOUT, LERR, OK )
*
* ZPBCON
*
SRNAMT = 'ZPBCON'
INFOT = 1
CALL ZPBCON( '/', 0, 0, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPBCON( 'U', -1, 0, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPBCON( 'U', 1, -1, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZPBCON( 'U', 2, 1, A, 1, ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZPBCON( 'U', 1, 0, A, 1, -ANRM, RCOND, W, R, INFO )
CALL CHKXER( 'ZPBCON', INFOT, NOUT, LERR, OK )
*
* ZPBEQU
*
SRNAMT = 'ZPBEQU'
INFOT = 1
CALL ZPBEQU( '/', 0, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZPBEQU( 'U', -1, 0, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZPBEQU( 'U', 1, -1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZPBEQU( 'U', 2, 1, A, 1, R1, RCOND, ANRM, INFO )
CALL CHKXER( 'ZPBEQU', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of ZERRPO
*
END