Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

660 lines
23 KiB

*> \brief \b ZERRSY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZERRSY( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZERRSY tests the error exits for the COMPLEX*16 routines
*> for symmetric indefinite matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZERRSY( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 4 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER I, INFO, J
DOUBLE PRECISION ANRM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX )
DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX )
COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
$ E( NMAX ), W( 2*NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, ZSPCON, ZSPRFS, ZSPTRF, ZSPTRI,
$ ZSPTRS, ZSYCON, ZSYCON_3, ZSYCON_ROOK, ZSYRFS,
$ ZSYTF2, ZSYTF2_RK, ZSYTF2_ROOK, ZSYTRF,
$ ZSYTRF_RK, ZSYTRF_ROOK, ZSYTRI, ZSYTRI_3,
$ ZSYTRI_3X, ZSYTRI_ROOK, ZSYTRI2, ZSYTRI2X,
$ ZSYTRS, ZSYTRS_3, ZSYTRS_ROOK
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
*
* Set the variables to innocuous values.
*
DO 20 J = 1, NMAX
DO 10 I = 1, NMAX
A( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
$ -1.D0 / DBLE( I+J ) )
AF( I, J ) = DCMPLX( 1.D0 / DBLE( I+J ),
$ -1.D0 / DBLE( I+J ) )
10 CONTINUE
B( J ) = 0.D0
E( J ) = 0.D0
R1( J ) = 0.D0
R2( J ) = 0.D0
W( J ) = 0.D0
X( J ) = 0.D0
IP( J ) = J
20 CONTINUE
ANRM = 1.0D0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'SY' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with partial
* (Bunch-Kaufman) diagonal pivoting method.
*
* ZSYTRF
*
SRNAMT = 'ZSYTRF'
INFOT = 1
CALL ZSYTRF( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRF( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRF( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYTRF( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYTRF( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'ZSYTRF', INFOT, NOUT, LERR, OK )
*
* ZSYTF2
*
SRNAMT = 'ZSYTF2'
INFOT = 1
CALL ZSYTF2( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTF2( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTF2( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'ZSYTF2', INFOT, NOUT, LERR, OK )
*
* ZSYTRI
*
SRNAMT = 'ZSYTRI'
INFOT = 1
CALL ZSYTRI( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRI( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRI( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'ZSYTRI', INFOT, NOUT, LERR, OK )
*
* ZSYTRI2
*
SRNAMT = 'ZSYTRI2'
INFOT = 1
CALL ZSYTRI2( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRI2( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRI2( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI2', INFOT, NOUT, LERR, OK )
*
* ZSYTRI2X
*
SRNAMT = 'ZSYTRI2X'
INFOT = 1
CALL ZSYTRI2X( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI2X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRI2X( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI2X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRI2X( 'U', 2, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI2X', INFOT, NOUT, LERR, OK )
*
* ZSYTRS
*
SRNAMT = 'ZSYTRS'
INFOT = 1
CALL ZSYTRS( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRS( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYTRS( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZSYTRS( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSYTRS( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS', INFOT, NOUT, LERR, OK )
*
* ZSYRFS
*
SRNAMT = 'ZSYRFS'
INFOT = 1
CALL ZSYRFS( '/', 0, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYRFS( 'U', -1, 0, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYRFS( 'U', 0, -1, A, 1, AF, 1, IP, B, 1, X, 1, R1, R2,
$ W, R, INFO )
CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZSYRFS( 'U', 2, 1, A, 1, AF, 2, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 1, IP, B, 2, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 1, X, 2, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
INFOT = 12
CALL ZSYRFS( 'U', 2, 1, A, 2, AF, 2, IP, B, 2, X, 1, R1, R2, W,
$ R, INFO )
CALL CHKXER( 'ZSYRFS', INFOT, NOUT, LERR, OK )
*
* ZSYCON
*
SRNAMT = 'ZSYCON'
INFOT = 1
CALL ZSYCON( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYCON( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYCON( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZSYCON( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SR' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with rook
* (bounded Bunch-Kaufman) diagonal pivoting method.
*
* ZSYTRF_ROOK
*
SRNAMT = 'ZSYTRF_ROOK'
INFOT = 1
CALL ZSYTRF_ROOK( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRF_ROOK( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRF_ROOK( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYTRF_ROOK( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYTRF_ROOK( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'ZSYTRF_ROOK', INFOT, NOUT, LERR, OK )
*
* ZSYTF2_ROOK
*
SRNAMT = 'ZSYTF2_ROOK'
INFOT = 1
CALL ZSYTF2_ROOK( '/', 0, A, 1, IP, INFO )
CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTF2_ROOK( 'U', -1, A, 1, IP, INFO )
CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTF2_ROOK( 'U', 2, A, 1, IP, INFO )
CALL CHKXER( 'ZSYTF2_ROOK', INFOT, NOUT, LERR, OK )
*
* ZSYTRI_ROOK
*
SRNAMT = 'ZSYTRI_ROOK'
INFOT = 1
CALL ZSYTRI_ROOK( '/', 0, A, 1, IP, W, INFO )
CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRI_ROOK( 'U', -1, A, 1, IP, W, INFO )
CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRI_ROOK( 'U', 2, A, 1, IP, W, INFO )
CALL CHKXER( 'ZSYTRI_ROOK', INFOT, NOUT, LERR, OK )
*
* ZSYTRS_ROOK
*
SRNAMT = 'ZSYTRS_ROOK'
INFOT = 1
CALL ZSYTRS_ROOK( '/', 0, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRS_ROOK( 'U', -1, 0, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYTRS_ROOK( 'U', 0, -1, A, 1, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZSYTRS_ROOK( 'U', 2, 1, A, 1, IP, B, 2, INFO )
CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSYTRS_ROOK( 'U', 2, 1, A, 2, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_ROOK', INFOT, NOUT, LERR, OK )
*
* ZSYCON_ROOK
*
SRNAMT = 'ZSYCON_ROOK'
INFOT = 1
CALL ZSYCON_ROOK( '/', 0, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYCON_ROOK( 'U', -1, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYCON_ROOK( 'U', 2, A, 1, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZSYCON_ROOK( 'U', 1, A, 1, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON_ROOK', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SK' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with rook
* (bounded Bunch-Kaufman) pivoting with the new storage
* format for factors L ( or U) and D.
*
* L (or U) is stored in A, diagonal of D is stored on the
* diagonal of A, subdiagonal of D is stored in a separate array E.
*
* ZSYTRF_RK
*
SRNAMT = 'ZSYTRF_RK'
INFOT = 1
CALL ZSYTRF_RK( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRF_RK( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRF_RK( 'U', 2, A, 1, E, IP, W, 4, INFO )
CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSYTRF_RK( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSYTRF_RK( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'ZSYTRF_RK', INFOT, NOUT, LERR, OK )
*
* ZSYTF2_RK
*
SRNAMT = 'ZSYTF2_RK'
INFOT = 1
CALL ZSYTF2_RK( '/', 0, A, 1, E, IP, INFO )
CALL CHKXER( 'ZSYTF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTF2_RK( 'U', -1, A, 1, E, IP, INFO )
CALL CHKXER( 'ZSYTF2_RK', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTF2_RK( 'U', 2, A, 1, E, IP, INFO )
CALL CHKXER( 'ZSYTF2_RK', INFOT, NOUT, LERR, OK )
*
* ZSYTRI_3
*
SRNAMT = 'ZSYTRI_3'
INFOT = 1
CALL ZSYTRI_3( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRI_3( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRI_3( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSYTRI_3( 'U', 0, A, 1, E, IP, W, 0, INFO )
CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSYTRI_3( 'U', 0, A, 1, E, IP, W, -2, INFO )
CALL CHKXER( 'ZSYTRI_3', INFOT, NOUT, LERR, OK )
*
* ZSYTRI_3X
*
SRNAMT = 'ZSYTRI_3X'
INFOT = 1
CALL ZSYTRI_3X( '/', 0, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRI_3X( 'U', -1, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI_3X', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRI_3X( 'U', 2, A, 1, E, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRI_3X', INFOT, NOUT, LERR, OK )
*
* ZSYTRS_3
*
SRNAMT = 'ZSYTRS_3'
INFOT = 1
CALL ZSYTRS_3( '/', 0, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRS_3( 'U', -1, 0, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYTRS_3( 'U', 0, -1, A, 1, E, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZSYTRS_3( 'U', 2, 1, A, 1, E, IP, B, 2, INFO )
CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
INFOT = 9
CALL ZSYTRS_3( 'U', 2, 1, A, 2, E, IP, B, 1, INFO )
CALL CHKXER( 'ZSYTRS_3', INFOT, NOUT, LERR, OK )
*
* ZSYCON_3
*
SRNAMT = 'ZSYCON_3'
INFOT = 1
CALL ZSYCON_3( '/', 0, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYCON_3( 'U', -1, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYCON_3( 'U', 2, A, 1, E, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYCON_3( 'U', 1, A, 1, E, IP, -1.0D0, RCOND, W, INFO)
CALL CHKXER( 'ZSYCON_3', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite packed matrix with partial
* (Bunch-Kaufman) pivoting.
*
* ZSPTRF
*
SRNAMT = 'ZSPTRF'
INFOT = 1
CALL ZSPTRF( '/', 0, A, IP, INFO )
CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSPTRF( 'U', -1, A, IP, INFO )
CALL CHKXER( 'ZSPTRF', INFOT, NOUT, LERR, OK )
*
* ZSPTRI
*
SRNAMT = 'ZSPTRI'
INFOT = 1
CALL ZSPTRI( '/', 0, A, IP, W, INFO )
CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSPTRI( 'U', -1, A, IP, W, INFO )
CALL CHKXER( 'ZSPTRI', INFOT, NOUT, LERR, OK )
*
* ZSPTRS
*
SRNAMT = 'ZSPTRS'
INFOT = 1
CALL ZSPTRS( '/', 0, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSPTRS( 'U', -1, 0, A, IP, B, 1, INFO )
CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSPTRS( 'U', 0, -1, A, IP, B, 1, INFO )
CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSPTRS( 'U', 2, 1, A, IP, B, 1, INFO )
CALL CHKXER( 'ZSPTRS', INFOT, NOUT, LERR, OK )
*
* ZSPRFS
*
SRNAMT = 'ZSPRFS'
INFOT = 1
CALL ZSPRFS( '/', 0, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSPRFS( 'U', -1, 0, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSPRFS( 'U', 0, -1, A, AF, IP, B, 1, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 1, X, 2, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZSPRFS( 'U', 2, 1, A, AF, IP, B, 2, X, 1, R1, R2, W, R,
$ INFO )
CALL CHKXER( 'ZSPRFS', INFOT, NOUT, LERR, OK )
*
* ZSPCON
*
SRNAMT = 'ZSPCON'
INFOT = 1
CALL ZSPCON( '/', 0, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSPCON( 'U', -1, A, IP, ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZSPCON( 'U', 1, A, IP, -ANRM, RCOND, W, INFO )
CALL CHKXER( 'ZSPCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'SA' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with Aasen's algorithm.
*
* ZSYTRF_AA
*
SRNAMT = 'ZSYTRF_AA'
INFOT = 1
CALL ZSYTRF_AA( '/', 0, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRF_AA( 'U', -1, A, 1, IP, W, 1, INFO )
CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRF_AA( 'U', 2, A, 1, IP, W, 4, INFO )
CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYTRF_AA( 'U', 0, A, 1, IP, W, 0, INFO )
CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYTRF_AA( 'U', 0, A, 1, IP, W, -2, INFO )
CALL CHKXER( 'ZSYTRF_AA', INFOT, NOUT, LERR, OK )
*
* ZSYTRS_AA
*
SRNAMT = 'ZSYTRS_AA'
INFOT = 1
CALL ZSYTRS_AA( '/', 0, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRS_AA( 'U', -1, 0, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYTRS_AA( 'U', 0, -1, A, 1, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZSYTRS_AA( 'U', 2, 1, A, 1, IP, B, 2, W, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZSYTRS_AA( 'U', 2, 1, A, 2, IP, B, 1, W, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'S2' ) ) THEN
*
* Test error exits of the routines that use factorization
* of a symmetric indefinite matrix with Aasen's algorithm.
*
* ZSYTRF_AA_2STAGE
*
SRNAMT = 'ZSYTRF_AA_2STAGE'
INFOT = 1
CALL ZSYTRF_AA_2STAGE( '/', 0, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRF_AA_2STAGE( 'U', -1, A, 1, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZSYTRF_AA_2STAGE( 'U', 2, A, 1, A, 2, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 1, IP, IP, W, 1,
$ INFO )
CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZSYTRF_AA_2STAGE( 'U', 2, A, 2, A, 8, IP, IP, W, 0,
$ INFO )
CALL CHKXER( 'ZSYTRF_AA_2STAGE', INFOT, NOUT, LERR, OK )
*
* CHETRS_AA_2STAGE
*
SRNAMT = 'ZSYTRS_AA_2STAGE'
INFOT = 1
CALL ZSYTRS_AA_2STAGE( '/', 0, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZSYTRS_AA_2STAGE( 'U', -1, 0, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZSYTRS_AA_2STAGE( 'U', 0, -1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 5
CALL ZSYTRS_AA_2STAGE( 'U', 2, 1, A, 1, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 7
CALL ZSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 1, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA_2STAGE', INFOT, NOUT, LERR, OK )
INFOT = 11
CALL ZSYTRS_AA_2STAGE( 'U', 2, 1, A, 2, A, 8, IP, IP,
$ B, 1, INFO )
CALL CHKXER( 'ZSYTRS_AA_STAGE', INFOT, NOUT, LERR, OK )
*
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of ZERRSY
*
END