You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
6.2 KiB
237 lines
6.2 KiB
*> \brief \b ZPOT01
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER LDA, LDAFAC, N
|
|
* DOUBLE PRECISION RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION RWORK( * )
|
|
* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZPOT01 reconstructs a Hermitian positive definite matrix A from
|
|
*> its L*L' or U'*U factorization and computes the residual
|
|
*> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
|
|
*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
|
|
*> where EPS is the machine epsilon, L' is the conjugate transpose of L,
|
|
*> and U' is the conjugate transpose of U.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the upper or lower triangular part of the
|
|
*> Hermitian matrix A is stored:
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows and columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA,N)
|
|
*> The original Hermitian matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AFAC
|
|
*> \verbatim
|
|
*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
|
|
*> On entry, the factor L or U from the L * L**H or U**H * U
|
|
*> factorization of A.
|
|
*> Overwritten with the reconstructed matrix, and then with
|
|
*> the difference L * L**H - A (or U**H * U - A).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAFAC
|
|
*> \verbatim
|
|
*> LDAFAC is INTEGER
|
|
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESID
|
|
*> \verbatim
|
|
*> RESID is DOUBLE PRECISION
|
|
*> If UPLO = 'L', norm(L * L**H - A) / ( N * norm(A) * EPS )
|
|
*> If UPLO = 'U', norm(U**H * U - A) / ( N * norm(A) * EPS )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER LDA, LDAFAC, N
|
|
DOUBLE PRECISION RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION RWORK( * )
|
|
COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, K
|
|
DOUBLE PRECISION ANORM, EPS, TR
|
|
COMPLEX*16 TC
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
DOUBLE PRECISION DLAMCH, ZLANHE
|
|
COMPLEX*16 ZDOTC
|
|
EXTERNAL LSAME, DLAMCH, ZLANHE, ZDOTC
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZHER, ZSCAL, ZTRMV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, DIMAG
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick exit if N = 0.
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
RESID = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Exit with RESID = 1/EPS if ANORM = 0.
|
|
*
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
|
|
IF( ANORM.LE.ZERO ) THEN
|
|
RESID = ONE / EPS
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Check the imaginary parts of the diagonal elements and return with
|
|
* an error code if any are nonzero.
|
|
*
|
|
DO 10 J = 1, N
|
|
IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
|
|
RESID = ONE / EPS
|
|
RETURN
|
|
END IF
|
|
10 CONTINUE
|
|
*
|
|
* Compute the product U**H * U, overwriting U.
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
DO 20 K = N, 1, -1
|
|
*
|
|
* Compute the (K,K) element of the result.
|
|
*
|
|
TR = DBLE( ZDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) )
|
|
AFAC( K, K ) = TR
|
|
*
|
|
* Compute the rest of column K.
|
|
*
|
|
CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
|
|
$ LDAFAC, AFAC( 1, K ), 1 )
|
|
*
|
|
20 CONTINUE
|
|
*
|
|
* Compute the product L * L**H, overwriting L.
|
|
*
|
|
ELSE
|
|
DO 30 K = N, 1, -1
|
|
*
|
|
* Add a multiple of column K of the factor L to each of
|
|
* columns K+1 through N.
|
|
*
|
|
IF( K+1.LE.N )
|
|
$ CALL ZHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
|
|
$ AFAC( K+1, K+1 ), LDAFAC )
|
|
*
|
|
* Scale column K by the diagonal element.
|
|
*
|
|
TC = AFAC( K, K )
|
|
CALL ZSCAL( N-K+1, TC, AFAC( K, K ), 1 )
|
|
*
|
|
30 CONTINUE
|
|
END IF
|
|
*
|
|
* Compute the difference L * L**H - A (or U**H * U - A).
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
DO 50 J = 1, N
|
|
DO 40 I = 1, J - 1
|
|
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
|
|
40 CONTINUE
|
|
AFAC( J, J ) = AFAC( J, J ) - DBLE( A( J, J ) )
|
|
50 CONTINUE
|
|
ELSE
|
|
DO 70 J = 1, N
|
|
AFAC( J, J ) = AFAC( J, J ) - DBLE( A( J, J ) )
|
|
DO 60 I = J + 1, N
|
|
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
END IF
|
|
*
|
|
* Compute norm(L*U - A) / ( N * norm(A) * EPS )
|
|
*
|
|
RESID = ZLANHE( '1', UPLO, N, AFAC, LDAFAC, RWORK )
|
|
*
|
|
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZPOT01
|
|
*
|
|
END
|
|
|