You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
7.2 KiB
262 lines
7.2 KiB
*> \brief \b ZQRT03
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
|
|
* RWORK, RESULT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER K, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION RESULT( * ), RWORK( * )
|
|
* COMPLEX*16 AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
|
|
* $ Q( LDA, * ), TAU( * ), WORK( LWORK )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZQRT03 tests ZUNMQR, which computes Q*C, Q'*C, C*Q or C*Q'.
|
|
*>
|
|
*> ZQRT03 compares the results of a call to ZUNMQR with the results of
|
|
*> forming Q explicitly by a call to ZUNGQR and then performing matrix
|
|
*> multiplication by a call to ZGEMM.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The order of the orthogonal matrix Q. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows or columns of the matrix C; C is m-by-n if
|
|
*> Q is applied from the left, or n-by-m if Q is applied from
|
|
*> the right. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of elementary reflectors whose product defines the
|
|
*> orthogonal matrix Q. M >= K >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AF
|
|
*> \verbatim
|
|
*> AF is COMPLEX*16 array, dimension (LDA,N)
|
|
*> Details of the QR factorization of an m-by-n matrix, as
|
|
*> returned by ZGEQRF. See ZGEQRF for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] C
|
|
*> \verbatim
|
|
*> C is COMPLEX*16 array, dimension (LDA,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] CC
|
|
*> \verbatim
|
|
*> CC is COMPLEX*16 array, dimension (LDA,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX*16 array, dimension (LDA,M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the arrays AF, C, CC, and Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX*16 array, dimension (min(M,N))
|
|
*> The scalar factors of the elementary reflectors corresponding
|
|
*> to the QR factorization in AF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of WORK. LWORK must be at least M, and should be
|
|
*> M*NB, where NB is the blocksize for this environment.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (M)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is DOUBLE PRECISION array, dimension (4)
|
|
*> The test ratios compare two techniques for multiplying a
|
|
*> random matrix C by an m-by-m orthogonal matrix Q.
|
|
*> RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS )
|
|
*> RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS )
|
|
*> RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
|
|
*> RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZQRT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
|
|
$ RWORK, RESULT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER K, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION RESULT( * ), RWORK( * )
|
|
COMPLEX*16 AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
|
|
$ Q( LDA, * ), TAU( * ), WORK( LWORK )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
COMPLEX*16 ROGUE
|
|
PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
CHARACTER SIDE, TRANS
|
|
INTEGER INFO, ISIDE, ITRANS, J, MC, NC
|
|
DOUBLE PRECISION CNORM, EPS, RESID
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
|
EXTERNAL LSAME, DLAMCH, ZLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ZGEMM, ZLACPY, ZLARNV, ZLASET, ZUNGQR, ZUNMQR
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER ISEED( 4 )
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC DBLE, DCMPLX, MAX
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
CHARACTER*32 SRNAMT
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / SRNAMC / SRNAMT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA ISEED / 1988, 1989, 1990, 1991 /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
*
|
|
* Copy the first k columns of the factorization to the array Q
|
|
*
|
|
CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
|
|
CALL ZLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
|
|
*
|
|
* Generate the m-by-m matrix Q
|
|
*
|
|
SRNAMT = 'ZUNGQR'
|
|
CALL ZUNGQR( M, M, K, Q, LDA, TAU, WORK, LWORK, INFO )
|
|
*
|
|
DO 30 ISIDE = 1, 2
|
|
IF( ISIDE.EQ.1 ) THEN
|
|
SIDE = 'L'
|
|
MC = M
|
|
NC = N
|
|
ELSE
|
|
SIDE = 'R'
|
|
MC = N
|
|
NC = M
|
|
END IF
|
|
*
|
|
* Generate MC by NC matrix C
|
|
*
|
|
DO 10 J = 1, NC
|
|
CALL ZLARNV( 2, ISEED, MC, C( 1, J ) )
|
|
10 CONTINUE
|
|
CNORM = ZLANGE( '1', MC, NC, C, LDA, RWORK )
|
|
IF( CNORM.EQ.ZERO )
|
|
$ CNORM = ONE
|
|
*
|
|
DO 20 ITRANS = 1, 2
|
|
IF( ITRANS.EQ.1 ) THEN
|
|
TRANS = 'N'
|
|
ELSE
|
|
TRANS = 'C'
|
|
END IF
|
|
*
|
|
* Copy C
|
|
*
|
|
CALL ZLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
|
|
*
|
|
* Apply Q or Q' to C
|
|
*
|
|
SRNAMT = 'ZUNMQR'
|
|
CALL ZUNMQR( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA,
|
|
$ WORK, LWORK, INFO )
|
|
*
|
|
* Form explicit product and subtract
|
|
*
|
|
IF( LSAME( SIDE, 'L' ) ) THEN
|
|
CALL ZGEMM( TRANS, 'No transpose', MC, NC, MC,
|
|
$ DCMPLX( -ONE ), Q, LDA, C, LDA,
|
|
$ DCMPLX( ONE ), CC, LDA )
|
|
ELSE
|
|
CALL ZGEMM( 'No transpose', TRANS, MC, NC, NC,
|
|
$ DCMPLX( -ONE ), C, LDA, Q, LDA,
|
|
$ DCMPLX( ONE ), CC, LDA )
|
|
END IF
|
|
*
|
|
* Compute error in the difference
|
|
*
|
|
RESID = ZLANGE( '1', MC, NC, CC, LDA, RWORK )
|
|
RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
|
|
$ ( DBLE( MAX( 1, M ) )*CNORM*EPS )
|
|
*
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of ZQRT03
|
|
*
|
|
END
|
|
|