Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

258 lines
7.1 KiB

*> \brief \b DSPR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
*
* .. Scalar Arguments ..
* DOUBLE PRECISION ALPHA
* INTEGER INCX,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AP(*),X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSPR performs the symmetric rank 1 operation
*>
*> A := alpha*x*x**T + A,
*>
*> where alpha is a real scalar, x is an n element vector and A is an
*> n by n symmetric matrix, supplied in packed form.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is DOUBLE PRECISION.
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is DOUBLE PRECISION array, dimension at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular part of the symmetric matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*> and a( 2, 2 ) respectively, and so on. On exit, the array
*> AP is overwritten by the upper triangular part of the
*> updated matrix.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular part of the symmetric matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*> and a( 3, 1 ) respectively, and so on. On exit, the array
*> AP is overwritten by the lower triangular part of the
*> updated matrix.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_blas_level2
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA
INTEGER INCX,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP(*),X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER (ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP
INTEGER I,INFO,IX,J,JX,K,KK,KX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DSPR ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set the start point in X if the increment is not unity.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*X(J)
K = KK
DO 10 I = 1,J
AP(K) = AP(K) + X(I)*TEMP
K = K + 1
10 CONTINUE
END IF
KK = KK + J
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IX = KX
DO 30 K = KK,KK + J - 1
AP(K) = AP(K) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
END IF
JX = JX + INCX
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*X(J)
K = KK
DO 50 I = J,N
AP(K) = AP(K) + X(I)*TEMP
K = K + 1
50 CONTINUE
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*X(JX)
IX = JX
DO 70 K = KK,KK + N - J
AP(K) = AP(K) + X(IX)*TEMP
IX = IX + INCX
70 CONTINUE
END IF
JX = JX + INCX
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of DSPR
*
END