You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
367 lines
10 KiB
367 lines
10 KiB
*> \brief \b SGBMV
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* REAL ALPHA,BETA
|
|
* INTEGER INCX,INCY,KL,KU,LDA,M,N
|
|
* CHARACTER TRANS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A(LDA,*),X(*),Y(*)
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGBMV performs one of the matrix-vector operations
|
|
*>
|
|
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
|
|
*>
|
|
*> where alpha and beta are scalars, x and y are vectors and A is an
|
|
*> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> On entry, TRANS specifies the operation to be performed as
|
|
*> follows:
|
|
*>
|
|
*> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
|
|
*>
|
|
*> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
|
|
*>
|
|
*> TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> On entry, M specifies the number of rows of the matrix A.
|
|
*> M must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> On entry, N specifies the number of columns of the matrix A.
|
|
*> N must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> On entry, KL specifies the number of sub-diagonals of the
|
|
*> matrix A. KL must satisfy 0 .le. KL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> On entry, KU specifies the number of super-diagonals of the
|
|
*> matrix A. KU must satisfy 0 .le. KU.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is REAL
|
|
*> On entry, ALPHA specifies the scalar alpha.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension ( LDA, N )
|
|
*> Before entry, the leading ( kl + ku + 1 ) by n part of the
|
|
*> array A must contain the matrix of coefficients, supplied
|
|
*> column by column, with the leading diagonal of the matrix in
|
|
*> row ( ku + 1 ) of the array, the first super-diagonal
|
|
*> starting at position 2 in row ku, the first sub-diagonal
|
|
*> starting at position 1 in row ( ku + 2 ), and so on.
|
|
*> Elements in the array A that do not correspond to elements
|
|
*> in the band matrix (such as the top left ku by ku triangle)
|
|
*> are not referenced.
|
|
*> The following program segment will transfer a band matrix
|
|
*> from conventional full matrix storage to band storage:
|
|
*>
|
|
*> DO 20, J = 1, N
|
|
*> K = KU + 1 - J
|
|
*> DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
|
|
*> A( K + I, J ) = matrix( I, J )
|
|
*> 10 CONTINUE
|
|
*> 20 CONTINUE
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> On entry, LDA specifies the first dimension of A as declared
|
|
*> in the calling (sub) program. LDA must be at least
|
|
*> ( kl + ku + 1 ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] X
|
|
*> \verbatim
|
|
*> X is REAL array, dimension at least
|
|
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
|
|
*> and at least
|
|
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
|
|
*> Before entry, the incremented array X must contain the
|
|
*> vector x.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCX
|
|
*> \verbatim
|
|
*> INCX is INTEGER
|
|
*> On entry, INCX specifies the increment for the elements of
|
|
*> X. INCX must not be zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BETA
|
|
*> \verbatim
|
|
*> BETA is REAL
|
|
*> On entry, BETA specifies the scalar beta. When BETA is
|
|
*> supplied as zero then Y need not be set on input.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Y
|
|
*> \verbatim
|
|
*> Y is REAL array, dimension at least
|
|
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
|
|
*> and at least
|
|
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
|
|
*> Before entry, the incremented array Y must contain the
|
|
*> vector y. On exit, Y is overwritten by the updated vector y.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCY
|
|
*> \verbatim
|
|
*> INCY is INTEGER
|
|
*> On entry, INCY specifies the increment for the elements of
|
|
*> Y. INCY must not be zero.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_blas_level2
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> Level 2 Blas routine.
|
|
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
|
|
*>
|
|
*> -- Written on 22-October-1986.
|
|
*> Jack Dongarra, Argonne National Lab.
|
|
*> Jeremy Du Croz, Nag Central Office.
|
|
*> Sven Hammarling, Nag Central Office.
|
|
*> Richard Hanson, Sandia National Labs.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
|
|
*
|
|
* -- Reference BLAS level2 routine --
|
|
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
REAL ALPHA,BETA
|
|
INTEGER INCX,INCY,KL,KU,LDA,M,N
|
|
CHARACTER TRANS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A(LDA,*),X(*),Y(*)
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE,ZERO
|
|
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
|
|
* ..
|
|
* .. Local Scalars ..
|
|
REAL TEMP
|
|
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX,MIN
|
|
* ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
|
+ .NOT.LSAME(TRANS,'C')) THEN
|
|
INFO = 1
|
|
ELSE IF (M.LT.0) THEN
|
|
INFO = 2
|
|
ELSE IF (N.LT.0) THEN
|
|
INFO = 3
|
|
ELSE IF (KL.LT.0) THEN
|
|
INFO = 4
|
|
ELSE IF (KU.LT.0) THEN
|
|
INFO = 5
|
|
ELSE IF (LDA.LT. (KL+KU+1)) THEN
|
|
INFO = 8
|
|
ELSE IF (INCX.EQ.0) THEN
|
|
INFO = 10
|
|
ELSE IF (INCY.EQ.0) THEN
|
|
INFO = 13
|
|
END IF
|
|
IF (INFO.NE.0) THEN
|
|
CALL XERBLA('SGBMV ',INFO)
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
|
|
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
|
*
|
|
* Set LENX and LENY, the lengths of the vectors x and y, and set
|
|
* up the start points in X and Y.
|
|
*
|
|
IF (LSAME(TRANS,'N')) THEN
|
|
LENX = N
|
|
LENY = M
|
|
ELSE
|
|
LENX = M
|
|
LENY = N
|
|
END IF
|
|
IF (INCX.GT.0) THEN
|
|
KX = 1
|
|
ELSE
|
|
KX = 1 - (LENX-1)*INCX
|
|
END IF
|
|
IF (INCY.GT.0) THEN
|
|
KY = 1
|
|
ELSE
|
|
KY = 1 - (LENY-1)*INCY
|
|
END IF
|
|
*
|
|
* Start the operations. In this version the elements of A are
|
|
* accessed sequentially with one pass through the band part of A.
|
|
*
|
|
* First form y := beta*y.
|
|
*
|
|
IF (BETA.NE.ONE) THEN
|
|
IF (INCY.EQ.1) THEN
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 10 I = 1,LENY
|
|
Y(I) = ZERO
|
|
10 CONTINUE
|
|
ELSE
|
|
DO 20 I = 1,LENY
|
|
Y(I) = BETA*Y(I)
|
|
20 CONTINUE
|
|
END IF
|
|
ELSE
|
|
IY = KY
|
|
IF (BETA.EQ.ZERO) THEN
|
|
DO 30 I = 1,LENY
|
|
Y(IY) = ZERO
|
|
IY = IY + INCY
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40 I = 1,LENY
|
|
Y(IY) = BETA*Y(IY)
|
|
IY = IY + INCY
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF (ALPHA.EQ.ZERO) RETURN
|
|
KUP1 = KU + 1
|
|
IF (LSAME(TRANS,'N')) THEN
|
|
*
|
|
* Form y := alpha*A*x + y.
|
|
*
|
|
JX = KX
|
|
IF (INCY.EQ.1) THEN
|
|
DO 60 J = 1,N
|
|
TEMP = ALPHA*X(JX)
|
|
K = KUP1 - J
|
|
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
Y(I) = Y(I) + TEMP*A(K+I,J)
|
|
50 CONTINUE
|
|
JX = JX + INCX
|
|
60 CONTINUE
|
|
ELSE
|
|
DO 80 J = 1,N
|
|
TEMP = ALPHA*X(JX)
|
|
IY = KY
|
|
K = KUP1 - J
|
|
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
Y(IY) = Y(IY) + TEMP*A(K+I,J)
|
|
IY = IY + INCY
|
|
70 CONTINUE
|
|
JX = JX + INCX
|
|
IF (J.GT.KU) KY = KY + INCY
|
|
80 CONTINUE
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form y := alpha*A**T*x + y.
|
|
*
|
|
JY = KY
|
|
IF (INCX.EQ.1) THEN
|
|
DO 100 J = 1,N
|
|
TEMP = ZERO
|
|
K = KUP1 - J
|
|
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
TEMP = TEMP + A(K+I,J)*X(I)
|
|
90 CONTINUE
|
|
Y(JY) = Y(JY) + ALPHA*TEMP
|
|
JY = JY + INCY
|
|
100 CONTINUE
|
|
ELSE
|
|
DO 120 J = 1,N
|
|
TEMP = ZERO
|
|
IX = KX
|
|
K = KUP1 - J
|
|
DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
|
|
TEMP = TEMP + A(K+I,J)*X(IX)
|
|
IX = IX + INCX
|
|
110 CONTINUE
|
|
Y(JY) = Y(JY) + ALPHA*TEMP
|
|
JY = JY + INCY
|
|
IF (J.GT.KU) KX = KX + INCX
|
|
120 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SGBMV
|
|
*
|
|
END
|
|
|