You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
463 lines
14 KiB
463 lines
14 KiB
*> \brief <b> CGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGGSVD + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggsvd.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggsvd.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggsvd.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
|
|
* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
|
|
* RWORK, IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBQ, JOBU, JOBV
|
|
* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* REAL ALPHA( * ), BETA( * ), RWORK( * )
|
|
* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
* $ U( LDU, * ), V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> This routine is deprecated and has been replaced by routine CGGSVD3.
|
|
*>
|
|
*> CGGSVD computes the generalized singular value decomposition (GSVD)
|
|
*> of an M-by-N complex matrix A and P-by-N complex matrix B:
|
|
*>
|
|
*> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
|
|
*>
|
|
*> where U, V and Q are unitary matrices.
|
|
*> Let K+L = the effective numerical rank of the
|
|
*> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
|
|
*> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
|
|
*> matrices and of the following structures, respectively:
|
|
*>
|
|
*> If M-K-L >= 0,
|
|
*>
|
|
*> K L
|
|
*> D1 = K ( I 0 )
|
|
*> L ( 0 C )
|
|
*> M-K-L ( 0 0 )
|
|
*>
|
|
*> K L
|
|
*> D2 = L ( 0 S )
|
|
*> P-L ( 0 0 )
|
|
*>
|
|
*> N-K-L K L
|
|
*> ( 0 R ) = K ( 0 R11 R12 )
|
|
*> L ( 0 0 R22 )
|
|
*>
|
|
*> where
|
|
*>
|
|
*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
|
|
*> S = diag( BETA(K+1), ... , BETA(K+L) ),
|
|
*> C**2 + S**2 = I.
|
|
*>
|
|
*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
|
|
*>
|
|
*> If M-K-L < 0,
|
|
*>
|
|
*> K M-K K+L-M
|
|
*> D1 = K ( I 0 0 )
|
|
*> M-K ( 0 C 0 )
|
|
*>
|
|
*> K M-K K+L-M
|
|
*> D2 = M-K ( 0 S 0 )
|
|
*> K+L-M ( 0 0 I )
|
|
*> P-L ( 0 0 0 )
|
|
*>
|
|
*> N-K-L K M-K K+L-M
|
|
*> ( 0 R ) = K ( 0 R11 R12 R13 )
|
|
*> M-K ( 0 0 R22 R23 )
|
|
*> K+L-M ( 0 0 0 R33 )
|
|
*>
|
|
*> where
|
|
*>
|
|
*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
|
|
*> S = diag( BETA(K+1), ... , BETA(M) ),
|
|
*> C**2 + S**2 = I.
|
|
*>
|
|
*> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
|
|
*> ( 0 R22 R23 )
|
|
*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
|
|
*>
|
|
*> The routine computes C, S, R, and optionally the unitary
|
|
*> transformation matrices U, V and Q.
|
|
*>
|
|
*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
|
|
*> A and B implicitly gives the SVD of A*inv(B):
|
|
*> A*inv(B) = U*(D1*inv(D2))*V**H.
|
|
*> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
|
|
*> equal to the CS decomposition of A and B. Furthermore, the GSVD can
|
|
*> be used to derive the solution of the eigenvalue problem:
|
|
*> A**H*A x = lambda* B**H*B x.
|
|
*> In some literature, the GSVD of A and B is presented in the form
|
|
*> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
|
|
*> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
|
|
*> ``diagonal''. The former GSVD form can be converted to the latter
|
|
*> form by taking the nonsingular matrix X as
|
|
*>
|
|
*> X = Q*( I 0 )
|
|
*> ( 0 inv(R) )
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBU
|
|
*> \verbatim
|
|
*> JOBU is CHARACTER*1
|
|
*> = 'U': Unitary matrix U is computed;
|
|
*> = 'N': U is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBV
|
|
*> \verbatim
|
|
*> JOBV is CHARACTER*1
|
|
*> = 'V': Unitary matrix V is computed;
|
|
*> = 'N': V is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBQ
|
|
*> \verbatim
|
|
*> JOBQ is CHARACTER*1
|
|
*> = 'Q': Unitary matrix Q is computed;
|
|
*> = 'N': Q is not computed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] P
|
|
*> \verbatim
|
|
*> P is INTEGER
|
|
*> The number of rows of the matrix B. P >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] L
|
|
*> \verbatim
|
|
*> L is INTEGER
|
|
*>
|
|
*> On exit, K and L specify the dimension of the subblocks
|
|
*> described in Purpose.
|
|
*> K + L = effective numerical rank of (A**H,B**H)**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the M-by-N matrix A.
|
|
*> On exit, A contains the triangular matrix R, or part of R.
|
|
*> See Purpose for details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (LDB,N)
|
|
*> On entry, the P-by-N matrix B.
|
|
*> On exit, B contains part of the triangular matrix R if
|
|
*> M-K-L < 0. See Purpose for details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,P).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BETA
|
|
*> \verbatim
|
|
*> BETA is REAL array, dimension (N)
|
|
*>
|
|
*> On exit, ALPHA and BETA contain the generalized singular
|
|
*> value pairs of A and B;
|
|
*> ALPHA(1:K) = 1,
|
|
*> BETA(1:K) = 0,
|
|
*> and if M-K-L >= 0,
|
|
*> ALPHA(K+1:K+L) = C,
|
|
*> BETA(K+1:K+L) = S,
|
|
*> or if M-K-L < 0,
|
|
*> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
|
|
*> BETA(K+1:M) =S, BETA(M+1:K+L) =1
|
|
*> and
|
|
*> ALPHA(K+L+1:N) = 0
|
|
*> BETA(K+L+1:N) = 0
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] U
|
|
*> \verbatim
|
|
*> U is COMPLEX array, dimension (LDU,M)
|
|
*> If JOBU = 'U', U contains the M-by-M unitary matrix U.
|
|
*> If JOBU = 'N', U is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of the array U. LDU >= max(1,M) if
|
|
*> JOBU = 'U'; LDU >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] V
|
|
*> \verbatim
|
|
*> V is COMPLEX array, dimension (LDV,P)
|
|
*> If JOBV = 'V', V contains the P-by-P unitary matrix V.
|
|
*> If JOBV = 'N', V is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of the array V. LDV >= max(1,P) if
|
|
*> JOBV = 'V'; LDV >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ,N)
|
|
*> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
|
|
*> If JOBQ = 'N', Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,N) if
|
|
*> JOBQ = 'Q'; LDQ >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (max(3*N,M,P)+N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (N)
|
|
*> On exit, IWORK stores the sorting information. More
|
|
*> precisely, the following loop will sort ALPHA
|
|
*> for I = K+1, min(M,K+L)
|
|
*> swap ALPHA(I) and ALPHA(IWORK(I))
|
|
*> endfor
|
|
*> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = 1, the Jacobi-type procedure failed to
|
|
*> converge. For further details, see subroutine CTGSJA.
|
|
*> \endverbatim
|
|
*
|
|
*> \par Internal Parameters:
|
|
* =========================
|
|
*>
|
|
*> \verbatim
|
|
*> TOLA REAL
|
|
*> TOLB REAL
|
|
*> TOLA and TOLB are the thresholds to determine the effective
|
|
*> rank of (A**H,B**H)**H. Generally, they are set to
|
|
*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
|
|
*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
|
|
*> The size of TOLA and TOLB may affect the size of backward
|
|
*> errors of the decomposition.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERsing
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Ming Gu and Huan Ren, Computer Science Division, University of
|
|
*> California at Berkeley, USA
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
|
|
$ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
|
|
$ RWORK, IWORK, INFO )
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBQ, JOBU, JOBV
|
|
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
REAL ALPHA( * ), BETA( * ), RWORK( * )
|
|
COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
$ U( LDU, * ), V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
LOGICAL WANTQ, WANTU, WANTV
|
|
INTEGER I, IBND, ISUB, J, NCYCLE
|
|
REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL CLANGE, SLAMCH
|
|
EXTERNAL LSAME, CLANGE, SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CGGSVP, CTGSJA, SCOPY, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and test the input parameters
|
|
*
|
|
WANTU = LSAME( JOBU, 'U' )
|
|
WANTV = LSAME( JOBV, 'V' )
|
|
WANTQ = LSAME( JOBQ, 'Q' )
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( P.LT.0 ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -10
|
|
ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
|
|
INFO = -12
|
|
ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
|
|
INFO = -16
|
|
ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
|
|
INFO = -18
|
|
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
|
|
INFO = -20
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGGSVD', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Compute the Frobenius norm of matrices A and B
|
|
*
|
|
ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
|
|
BNORM = CLANGE( '1', P, N, B, LDB, RWORK )
|
|
*
|
|
* Get machine precision and set up threshold for determining
|
|
* the effective numerical rank of the matrices A and B.
|
|
*
|
|
ULP = SLAMCH( 'Precision' )
|
|
UNFL = SLAMCH( 'Safe Minimum' )
|
|
TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
|
|
TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
|
|
*
|
|
CALL CGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
|
|
$ TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK,
|
|
$ WORK, WORK( N+1 ), INFO )
|
|
*
|
|
* Compute the GSVD of two upper "triangular" matrices
|
|
*
|
|
CALL CTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
|
|
$ TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
|
|
$ WORK, NCYCLE, INFO )
|
|
*
|
|
* Sort the singular values and store the pivot indices in IWORK
|
|
* Copy ALPHA to RWORK, then sort ALPHA in RWORK
|
|
*
|
|
CALL SCOPY( N, ALPHA, 1, RWORK, 1 )
|
|
IBND = MIN( L, M-K )
|
|
DO 20 I = 1, IBND
|
|
*
|
|
* Scan for largest ALPHA(K+I)
|
|
*
|
|
ISUB = I
|
|
SMAX = RWORK( K+I )
|
|
DO 10 J = I + 1, IBND
|
|
TEMP = RWORK( K+J )
|
|
IF( TEMP.GT.SMAX ) THEN
|
|
ISUB = J
|
|
SMAX = TEMP
|
|
END IF
|
|
10 CONTINUE
|
|
IF( ISUB.NE.I ) THEN
|
|
RWORK( K+ISUB ) = RWORK( K+I )
|
|
RWORK( K+I ) = SMAX
|
|
IWORK( K+I ) = K + ISUB
|
|
ELSE
|
|
IWORK( K+I ) = K + I
|
|
END IF
|
|
20 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CGGSVD
|
|
*
|
|
END
|
|
|