You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
347 lines
9.4 KiB
347 lines
9.4 KiB
*> \brief \b CGBEQUB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGBEQUB + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbequb.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbequb.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbequb.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
|
|
* AMAX, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, KL, KU, LDAB, M, N
|
|
* REAL AMAX, COLCND, ROWCND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL C( * ), R( * )
|
|
* COMPLEX AB( LDAB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGBEQUB computes row and column scalings intended to equilibrate an
|
|
*> M-by-N matrix A and reduce its condition number. R returns the row
|
|
*> scale factors and C the column scale factors, chosen to try to make
|
|
*> the largest element in each row and column of the matrix B with
|
|
*> elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most
|
|
*> the radix.
|
|
*>
|
|
*> R(i) and C(j) are restricted to be a power of the radix between
|
|
*> SMLNUM = smallest safe number and BIGNUM = largest safe number. Use
|
|
*> of these scaling factors is not guaranteed to reduce the condition
|
|
*> number of A but works well in practice.
|
|
*>
|
|
*> This routine differs from CGEEQU by restricting the scaling factors
|
|
*> to a power of the radix. Barring over- and underflow, scaling by
|
|
*> these factors introduces no additional rounding errors. However, the
|
|
*> scaled entries' magnitudes are no longer approximately 1 but lie
|
|
*> between sqrt(radix) and 1/sqrt(radix).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX array, dimension (LDAB,N)
|
|
*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
|
|
*> The j-th column of A is stored in the j-th column of the
|
|
*> array AB as follows:
|
|
*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array A. LDAB >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] R
|
|
*> \verbatim
|
|
*> R is REAL array, dimension (M)
|
|
*> If INFO = 0 or INFO > M, R contains the row scale factors
|
|
*> for A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] C
|
|
*> \verbatim
|
|
*> C is REAL array, dimension (N)
|
|
*> If INFO = 0, C contains the column scale factors for A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ROWCND
|
|
*> \verbatim
|
|
*> ROWCND is REAL
|
|
*> If INFO = 0 or INFO > M, ROWCND contains the ratio of the
|
|
*> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
|
|
*> AMAX is neither too large nor too small, it is not worth
|
|
*> scaling by R.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] COLCND
|
|
*> \verbatim
|
|
*> COLCND is REAL
|
|
*> If INFO = 0, COLCND contains the ratio of the smallest
|
|
*> C(i) to the largest C(i). If COLCND >= 0.1, it is not
|
|
*> worth scaling by C.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AMAX
|
|
*> \verbatim
|
|
*> AMAX is REAL
|
|
*> Absolute value of largest matrix element. If AMAX is very
|
|
*> close to overflow or very close to underflow, the matrix
|
|
*> should be scaled.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, and i is
|
|
*> <= M: the i-th row of A is exactly zero
|
|
*> > M: the (i-M)-th column of A is exactly zero
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGBcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
|
|
$ AMAX, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, KL, KU, LDAB, M, N
|
|
REAL AMAX, COLCND, ROWCND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL C( * ), R( * )
|
|
COMPLEX AB( LDAB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, KD
|
|
REAL BIGNUM, RCMAX, RCMIN, SMLNUM, RADIX,
|
|
$ LOGRDX
|
|
COMPLEX ZDUM
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH
|
|
EXTERNAL SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, LOG, REAL, AIMAG
|
|
* ..
|
|
* .. Statement Functions ..
|
|
REAL CABS1
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( KL.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( KU.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDAB.LT.KL+KU+1 ) THEN
|
|
INFO = -6
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGBEQUB', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
|
|
ROWCND = ONE
|
|
COLCND = ONE
|
|
AMAX = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants. Assume SMLNUM is a power of the radix.
|
|
*
|
|
SMLNUM = SLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
RADIX = SLAMCH( 'B' )
|
|
LOGRDX = LOG(RADIX)
|
|
*
|
|
* Compute row scale factors.
|
|
*
|
|
DO 10 I = 1, M
|
|
R( I ) = ZERO
|
|
10 CONTINUE
|
|
*
|
|
* Find the maximum element in each row.
|
|
*
|
|
KD = KU + 1
|
|
DO 30 J = 1, N
|
|
DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M )
|
|
R( I ) = MAX( R( I ), CABS1( AB( KD+I-J, J ) ) )
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
DO I = 1, M
|
|
IF( R( I ).GT.ZERO ) THEN
|
|
R( I ) = RADIX**INT( LOG( R( I ) ) / LOGRDX )
|
|
END IF
|
|
END DO
|
|
*
|
|
* Find the maximum and minimum scale factors.
|
|
*
|
|
RCMIN = BIGNUM
|
|
RCMAX = ZERO
|
|
DO 40 I = 1, M
|
|
RCMAX = MAX( RCMAX, R( I ) )
|
|
RCMIN = MIN( RCMIN, R( I ) )
|
|
40 CONTINUE
|
|
AMAX = RCMAX
|
|
*
|
|
IF( RCMIN.EQ.ZERO ) THEN
|
|
*
|
|
* Find the first zero scale factor and return an error code.
|
|
*
|
|
DO 50 I = 1, M
|
|
IF( R( I ).EQ.ZERO ) THEN
|
|
INFO = I
|
|
RETURN
|
|
END IF
|
|
50 CONTINUE
|
|
ELSE
|
|
*
|
|
* Invert the scale factors.
|
|
*
|
|
DO 60 I = 1, M
|
|
R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
|
|
60 CONTINUE
|
|
*
|
|
* Compute ROWCND = min(R(I)) / max(R(I)).
|
|
*
|
|
ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
|
|
END IF
|
|
*
|
|
* Compute column scale factors.
|
|
*
|
|
DO 70 J = 1, N
|
|
C( J ) = ZERO
|
|
70 CONTINUE
|
|
*
|
|
* Find the maximum element in each column,
|
|
* assuming the row scaling computed above.
|
|
*
|
|
DO 90 J = 1, N
|
|
DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M )
|
|
C( J ) = MAX( C( J ), CABS1( AB( KD+I-J, J ) )*R( I ) )
|
|
80 CONTINUE
|
|
IF( C( J ).GT.ZERO ) THEN
|
|
C( J ) = RADIX**INT( LOG( C( J ) ) / LOGRDX )
|
|
END IF
|
|
90 CONTINUE
|
|
*
|
|
* Find the maximum and minimum scale factors.
|
|
*
|
|
RCMIN = BIGNUM
|
|
RCMAX = ZERO
|
|
DO 100 J = 1, N
|
|
RCMIN = MIN( RCMIN, C( J ) )
|
|
RCMAX = MAX( RCMAX, C( J ) )
|
|
100 CONTINUE
|
|
*
|
|
IF( RCMIN.EQ.ZERO ) THEN
|
|
*
|
|
* Find the first zero scale factor and return an error code.
|
|
*
|
|
DO 110 J = 1, N
|
|
IF( C( J ).EQ.ZERO ) THEN
|
|
INFO = M + J
|
|
RETURN
|
|
END IF
|
|
110 CONTINUE
|
|
ELSE
|
|
*
|
|
* Invert the scale factors.
|
|
*
|
|
DO 120 J = 1, N
|
|
C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
|
|
120 CONTINUE
|
|
*
|
|
* Compute COLCND = min(C(J)) / max(C(J)).
|
|
*
|
|
COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CGBEQUB
|
|
*
|
|
END
|
|
|