You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
274 lines
7.9 KiB
274 lines
7.9 KiB
*> \brief \b CGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGBTF2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtf2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtf2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtf2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, KL, KU, LDAB, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX AB( LDAB, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGBTF2 computes an LU factorization of a complex m-by-n band matrix
|
|
*> A using partial pivoting with row interchanges.
|
|
*>
|
|
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix A. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KL
|
|
*> \verbatim
|
|
*> KL is INTEGER
|
|
*> The number of subdiagonals within the band of A. KL >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KU
|
|
*> \verbatim
|
|
*> KU is INTEGER
|
|
*> The number of superdiagonals within the band of A. KU >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] AB
|
|
*> \verbatim
|
|
*> AB is COMPLEX array, dimension (LDAB,N)
|
|
*> On entry, the matrix A in band storage, in rows KL+1 to
|
|
*> 2*KL+KU+1; rows 1 to KL of the array need not be set.
|
|
*> The j-th column of A is stored in the j-th column of the
|
|
*> array AB as follows:
|
|
*> AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
|
|
*>
|
|
*> On exit, details of the factorization: U is stored as an
|
|
*> upper triangular band matrix with KL+KU superdiagonals in
|
|
*> rows 1 to KL+KU+1, and the multipliers used during the
|
|
*> factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
|
|
*> See below for further details.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAB
|
|
*> \verbatim
|
|
*> LDAB is INTEGER
|
|
*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (min(M,N))
|
|
*> The pivot indices; for 1 <= i <= min(M,N), row i of the
|
|
*> matrix was interchanged with row IPIV(i).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
|
|
*> has been completed, but the factor U is exactly
|
|
*> singular, and division by zero will occur if it is used
|
|
*> to solve a system of equations.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexGBcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The band storage scheme is illustrated by the following example, when
|
|
*> M = N = 6, KL = 2, KU = 1:
|
|
*>
|
|
*> On entry: On exit:
|
|
*>
|
|
*> * * * + + + * * * u14 u25 u36
|
|
*> * * + + + + * * u13 u24 u35 u46
|
|
*> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
|
|
*> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
|
|
*> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
|
|
*> a31 a42 a53 a64 * * m31 m42 m53 m64 * *
|
|
*>
|
|
*> Array elements marked * are not used by the routine; elements marked
|
|
*> + need not be set on entry, but are required by the routine to store
|
|
*> elements of U, because of fill-in resulting from the row
|
|
*> interchanges.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, KL, KU, LDAB, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX AB( LDAB, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX ONE, ZERO
|
|
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
|
|
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, JP, JU, KM, KV
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ICAMAX
|
|
EXTERNAL ICAMAX
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CGERU, CSCAL, CSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* KV is the number of superdiagonals in the factor U, allowing for
|
|
* fill-in.
|
|
*
|
|
KV = KU + KL
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( KL.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( KU.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDAB.LT.KL+KV+1 ) THEN
|
|
INFO = -6
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGBTF2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Gaussian elimination with partial pivoting
|
|
*
|
|
* Set fill-in elements in columns KU+2 to KV to zero.
|
|
*
|
|
DO 20 J = KU + 2, MIN( KV, N )
|
|
DO 10 I = KV - J + 2, KL
|
|
AB( I, J ) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
*
|
|
* JU is the index of the last column affected by the current stage
|
|
* of the factorization.
|
|
*
|
|
JU = 1
|
|
*
|
|
DO 40 J = 1, MIN( M, N )
|
|
*
|
|
* Set fill-in elements in column J+KV to zero.
|
|
*
|
|
IF( J+KV.LE.N ) THEN
|
|
DO 30 I = 1, KL
|
|
AB( I, J+KV ) = ZERO
|
|
30 CONTINUE
|
|
END IF
|
|
*
|
|
* Find pivot and test for singularity. KM is the number of
|
|
* subdiagonal elements in the current column.
|
|
*
|
|
KM = MIN( KL, M-J )
|
|
JP = ICAMAX( KM+1, AB( KV+1, J ), 1 )
|
|
IPIV( J ) = JP + J - 1
|
|
IF( AB( KV+JP, J ).NE.ZERO ) THEN
|
|
JU = MAX( JU, MIN( J+KU+JP-1, N ) )
|
|
*
|
|
* Apply interchange to columns J to JU.
|
|
*
|
|
IF( JP.NE.1 )
|
|
$ CALL CSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
|
|
$ AB( KV+1, J ), LDAB-1 )
|
|
IF( KM.GT.0 ) THEN
|
|
*
|
|
* Compute multipliers.
|
|
*
|
|
CALL CSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
|
|
*
|
|
* Update trailing submatrix within the band.
|
|
*
|
|
IF( JU.GT.J )
|
|
$ CALL CGERU( KM, JU-J, -ONE, AB( KV+2, J ), 1,
|
|
$ AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
|
|
$ LDAB-1 )
|
|
END IF
|
|
ELSE
|
|
*
|
|
* If pivot is zero, set INFO to the index of the pivot
|
|
* unless a zero pivot has already been found.
|
|
*
|
|
IF( INFO.EQ.0 )
|
|
$ INFO = J
|
|
END IF
|
|
40 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of CGBTF2
|
|
*
|
|
END
|
|
|