You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
664 lines
22 KiB
664 lines
22 KiB
*> \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGEEVX + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeevx.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeevx.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeevx.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
|
|
* LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
|
|
* RCONDV, WORK, LWORK, RWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER BALANC, JOBVL, JOBVR, SENSE
|
|
* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
|
|
* REAL ABNRM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL RCONDE( * ), RCONDV( * ), RWORK( * ),
|
|
* $ SCALE( * )
|
|
* COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
|
|
* $ W( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
|
|
*> eigenvalues and, optionally, the left and/or right eigenvectors.
|
|
*>
|
|
*> Optionally also, it computes a balancing transformation to improve
|
|
*> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
|
|
*> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
|
|
*> (RCONDE), and reciprocal condition numbers for the right
|
|
*> eigenvectors (RCONDV).
|
|
*>
|
|
*> The right eigenvector v(j) of A satisfies
|
|
*> A * v(j) = lambda(j) * v(j)
|
|
*> where lambda(j) is its eigenvalue.
|
|
*> The left eigenvector u(j) of A satisfies
|
|
*> u(j)**H * A = lambda(j) * u(j)**H
|
|
*> where u(j)**H denotes the conjugate transpose of u(j).
|
|
*>
|
|
*> The computed eigenvectors are normalized to have Euclidean norm
|
|
*> equal to 1 and largest component real.
|
|
*>
|
|
*> Balancing a matrix means permuting the rows and columns to make it
|
|
*> more nearly upper triangular, and applying a diagonal similarity
|
|
*> transformation D * A * D**(-1), where D is a diagonal matrix, to
|
|
*> make its rows and columns closer in norm and the condition numbers
|
|
*> of its eigenvalues and eigenvectors smaller. The computed
|
|
*> reciprocal condition numbers correspond to the balanced matrix.
|
|
*> Permuting rows and columns will not change the condition numbers
|
|
*> (in exact arithmetic) but diagonal scaling will. For further
|
|
*> explanation of balancing, see section 4.10.2 of the LAPACK
|
|
*> Users' Guide.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] BALANC
|
|
*> \verbatim
|
|
*> BALANC is CHARACTER*1
|
|
*> Indicates how the input matrix should be diagonally scaled
|
|
*> and/or permuted to improve the conditioning of its
|
|
*> eigenvalues.
|
|
*> = 'N': Do not diagonally scale or permute;
|
|
*> = 'P': Perform permutations to make the matrix more nearly
|
|
*> upper triangular. Do not diagonally scale;
|
|
*> = 'S': Diagonally scale the matrix, ie. replace A by
|
|
*> D*A*D**(-1), where D is a diagonal matrix chosen
|
|
*> to make the rows and columns of A more equal in
|
|
*> norm. Do not permute;
|
|
*> = 'B': Both diagonally scale and permute A.
|
|
*>
|
|
*> Computed reciprocal condition numbers will be for the matrix
|
|
*> after balancing and/or permuting. Permuting does not change
|
|
*> condition numbers (in exact arithmetic), but balancing does.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBVL
|
|
*> \verbatim
|
|
*> JOBVL is CHARACTER*1
|
|
*> = 'N': left eigenvectors of A are not computed;
|
|
*> = 'V': left eigenvectors of A are computed.
|
|
*> If SENSE = 'E' or 'B', JOBVL must = 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBVR
|
|
*> \verbatim
|
|
*> JOBVR is CHARACTER*1
|
|
*> = 'N': right eigenvectors of A are not computed;
|
|
*> = 'V': right eigenvectors of A are computed.
|
|
*> If SENSE = 'E' or 'B', JOBVR must = 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SENSE
|
|
*> \verbatim
|
|
*> SENSE is CHARACTER*1
|
|
*> Determines which reciprocal condition numbers are computed.
|
|
*> = 'N': None are computed;
|
|
*> = 'E': Computed for eigenvalues only;
|
|
*> = 'V': Computed for right eigenvectors only;
|
|
*> = 'B': Computed for eigenvalues and right eigenvectors.
|
|
*>
|
|
*> If SENSE = 'E' or 'B', both left and right eigenvectors
|
|
*> must also be computed (JOBVL = 'V' and JOBVR = 'V').
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the N-by-N matrix A.
|
|
*> On exit, A has been overwritten. If JOBVL = 'V' or
|
|
*> JOBVR = 'V', A contains the Schur form of the balanced
|
|
*> version of the matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is COMPLEX array, dimension (N)
|
|
*> W contains the computed eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VL
|
|
*> \verbatim
|
|
*> VL is COMPLEX array, dimension (LDVL,N)
|
|
*> If JOBVL = 'V', the left eigenvectors u(j) are stored one
|
|
*> after another in the columns of VL, in the same order
|
|
*> as their eigenvalues.
|
|
*> If JOBVL = 'N', VL is not referenced.
|
|
*> u(j) = VL(:,j), the j-th column of VL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVL
|
|
*> \verbatim
|
|
*> LDVL is INTEGER
|
|
*> The leading dimension of the array VL. LDVL >= 1; if
|
|
*> JOBVL = 'V', LDVL >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VR
|
|
*> \verbatim
|
|
*> VR is COMPLEX array, dimension (LDVR,N)
|
|
*> If JOBVR = 'V', the right eigenvectors v(j) are stored one
|
|
*> after another in the columns of VR, in the same order
|
|
*> as their eigenvalues.
|
|
*> If JOBVR = 'N', VR is not referenced.
|
|
*> v(j) = VR(:,j), the j-th column of VR.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVR
|
|
*> \verbatim
|
|
*> LDVR is INTEGER
|
|
*> The leading dimension of the array VR. LDVR >= 1; if
|
|
*> JOBVR = 'V', LDVR >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*> ILO and IHI are integer values determined when A was
|
|
*> balanced. The balanced A(i,j) = 0 if I > J and
|
|
*> J = 1,...,ILO-1 or I = IHI+1,...,N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SCALE
|
|
*> \verbatim
|
|
*> SCALE is REAL array, dimension (N)
|
|
*> Details of the permutations and scaling factors applied
|
|
*> when balancing A. If P(j) is the index of the row and column
|
|
*> interchanged with row and column j, and D(j) is the scaling
|
|
*> factor applied to row and column j, then
|
|
*> SCALE(J) = P(J), for J = 1,...,ILO-1
|
|
*> = D(J), for J = ILO,...,IHI
|
|
*> = P(J) for J = IHI+1,...,N.
|
|
*> The order in which the interchanges are made is N to IHI+1,
|
|
*> then 1 to ILO-1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ABNRM
|
|
*> \verbatim
|
|
*> ABNRM is REAL
|
|
*> The one-norm of the balanced matrix (the maximum
|
|
*> of the sum of absolute values of elements of any column).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCONDE
|
|
*> \verbatim
|
|
*> RCONDE is REAL array, dimension (N)
|
|
*> RCONDE(j) is the reciprocal condition number of the j-th
|
|
*> eigenvalue.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCONDV
|
|
*> \verbatim
|
|
*> RCONDV is REAL array, dimension (N)
|
|
*> RCONDV(j) is the reciprocal condition number of the j-th
|
|
*> right eigenvector.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. If SENSE = 'N' or 'E',
|
|
*> LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
|
|
*> LWORK >= N*N+2*N.
|
|
*> For good performance, LWORK must generally be larger.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = i, the QR algorithm failed to compute all the
|
|
*> eigenvalues, and no eigenvectors or condition numbers
|
|
*> have been computed; elements 1:ILO-1 and i+1:N of W
|
|
*> contain eigenvalues which have converged.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*
|
|
* @generated from zgeevx.f, fortran z -> c, Tue Apr 19 01:47:44 2016
|
|
*
|
|
*> \ingroup complexGEeigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
|
|
$ LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
|
|
$ RCONDV, WORK, LWORK, RWORK, INFO )
|
|
implicit none
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER BALANC, JOBVL, JOBVR, SENSE
|
|
INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
|
|
REAL ABNRM
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL RCONDE( * ), RCONDV( * ), RWORK( * ),
|
|
$ SCALE( * )
|
|
COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
|
|
$ W( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
|
|
$ WNTSNN, WNTSNV
|
|
CHARACTER JOB, SIDE
|
|
INTEGER HSWORK, I, ICOND, IERR, ITAU, IWRK, K,
|
|
$ LWORK_TREVC, MAXWRK, MINWRK, NOUT
|
|
REAL ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
|
|
COMPLEX TMP
|
|
* ..
|
|
* .. Local Arrays ..
|
|
LOGICAL SELECT( 1 )
|
|
REAL DUM( 1 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SLASCL, XERBLA, CSSCAL, CGEBAK, CGEBAL,
|
|
$ CGEHRD, CHSEQR, CLACPY, CLASCL, CSCAL, CTREVC3,
|
|
$ CTRSNA, CUNGHR
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ISAMAX, ILAENV
|
|
REAL SLAMCH, SCNRM2, CLANGE
|
|
EXTERNAL LSAME, ISAMAX, ILAENV, SLAMCH, SCNRM2, CLANGE
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC REAL, CMPLX, CONJG, AIMAG, MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
WANTVL = LSAME( JOBVL, 'V' )
|
|
WANTVR = LSAME( JOBVR, 'V' )
|
|
WNTSNN = LSAME( SENSE, 'N' )
|
|
WNTSNE = LSAME( SENSE, 'E' )
|
|
WNTSNV = LSAME( SENSE, 'V' )
|
|
WNTSNB = LSAME( SENSE, 'B' )
|
|
IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
|
|
$ LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
|
|
$ ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
|
|
$ WANTVR ) ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
|
|
INFO = -10
|
|
ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
|
|
INFO = -12
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
|
* minimal amount of workspace needed at that point in the code,
|
|
* as well as the preferred amount for good performance.
|
|
* CWorkspace refers to complex workspace, and RWorkspace to real
|
|
* workspace. NB refers to the optimal block size for the
|
|
* immediately following subroutine, as returned by ILAENV.
|
|
* HSWORK refers to the workspace preferred by CHSEQR, as
|
|
* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
|
|
* the worst case.)
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( N.EQ.0 ) THEN
|
|
MINWRK = 1
|
|
MAXWRK = 1
|
|
ELSE
|
|
MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 )
|
|
*
|
|
IF( WANTVL ) THEN
|
|
CALL CTREVC3( 'L', 'B', SELECT, N, A, LDA,
|
|
$ VL, LDVL, VR, LDVR,
|
|
$ N, NOUT, WORK, -1, RWORK, -1, IERR )
|
|
LWORK_TREVC = INT( WORK(1) )
|
|
MAXWRK = MAX( MAXWRK, LWORK_TREVC )
|
|
CALL CHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
|
|
$ WORK, -1, INFO )
|
|
ELSE IF( WANTVR ) THEN
|
|
CALL CTREVC3( 'R', 'B', SELECT, N, A, LDA,
|
|
$ VL, LDVL, VR, LDVR,
|
|
$ N, NOUT, WORK, -1, RWORK, -1, IERR )
|
|
LWORK_TREVC = INT( WORK(1) )
|
|
MAXWRK = MAX( MAXWRK, LWORK_TREVC )
|
|
CALL CHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
|
|
$ WORK, -1, INFO )
|
|
ELSE
|
|
IF( WNTSNN ) THEN
|
|
CALL CHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
|
|
$ WORK, -1, INFO )
|
|
ELSE
|
|
CALL CHSEQR( 'S', 'N', N, 1, N, A, LDA, W, VR, LDVR,
|
|
$ WORK, -1, INFO )
|
|
END IF
|
|
END IF
|
|
HSWORK = INT( WORK(1) )
|
|
*
|
|
IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
|
|
MINWRK = 2*N
|
|
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
|
|
$ MINWRK = MAX( MINWRK, N*N + 2*N )
|
|
MAXWRK = MAX( MAXWRK, HSWORK )
|
|
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
|
|
$ MAXWRK = MAX( MAXWRK, N*N + 2*N )
|
|
ELSE
|
|
MINWRK = 2*N
|
|
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
|
|
$ MINWRK = MAX( MINWRK, N*N + 2*N )
|
|
MAXWRK = MAX( MAXWRK, HSWORK )
|
|
MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
|
|
$ ' ', N, 1, N, -1 ) )
|
|
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
|
|
$ MAXWRK = MAX( MAXWRK, N*N + 2*N )
|
|
MAXWRK = MAX( MAXWRK, 2*N )
|
|
END IF
|
|
MAXWRK = MAX( MAXWRK, MINWRK )
|
|
END IF
|
|
WORK( 1 ) = MAXWRK
|
|
*
|
|
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
|
|
INFO = -20
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGEEVX', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Get machine constants
|
|
*
|
|
EPS = SLAMCH( 'P' )
|
|
SMLNUM = SLAMCH( 'S' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SMLNUM = SQRT( SMLNUM ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
*
|
|
* Scale A if max element outside range [SMLNUM,BIGNUM]
|
|
*
|
|
ICOND = 0
|
|
ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
|
|
SCALEA = .FALSE.
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
|
|
SCALEA = .TRUE.
|
|
CSCALE = SMLNUM
|
|
ELSE IF( ANRM.GT.BIGNUM ) THEN
|
|
SCALEA = .TRUE.
|
|
CSCALE = BIGNUM
|
|
END IF
|
|
IF( SCALEA )
|
|
$ CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
|
|
*
|
|
* Balance the matrix and compute ABNRM
|
|
*
|
|
CALL CGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
|
|
ABNRM = CLANGE( '1', N, N, A, LDA, DUM )
|
|
IF( SCALEA ) THEN
|
|
DUM( 1 ) = ABNRM
|
|
CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
|
|
ABNRM = DUM( 1 )
|
|
END IF
|
|
*
|
|
* Reduce to upper Hessenberg form
|
|
* (CWorkspace: need 2*N, prefer N+N*NB)
|
|
* (RWorkspace: none)
|
|
*
|
|
ITAU = 1
|
|
IWRK = ITAU + N
|
|
CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
|
|
$ LWORK-IWRK+1, IERR )
|
|
*
|
|
IF( WANTVL ) THEN
|
|
*
|
|
* Want left eigenvectors
|
|
* Copy Householder vectors to VL
|
|
*
|
|
SIDE = 'L'
|
|
CALL CLACPY( 'L', N, N, A, LDA, VL, LDVL )
|
|
*
|
|
* Generate unitary matrix in VL
|
|
* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
|
|
* (RWorkspace: none)
|
|
*
|
|
CALL CUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
|
|
$ LWORK-IWRK+1, IERR )
|
|
*
|
|
* Perform QR iteration, accumulating Schur vectors in VL
|
|
* (CWorkspace: need 1, prefer HSWORK (see comments) )
|
|
* (RWorkspace: none)
|
|
*
|
|
IWRK = ITAU
|
|
CALL CHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
|
|
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
|
|
*
|
|
IF( WANTVR ) THEN
|
|
*
|
|
* Want left and right eigenvectors
|
|
* Copy Schur vectors to VR
|
|
*
|
|
SIDE = 'B'
|
|
CALL CLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
|
|
END IF
|
|
*
|
|
ELSE IF( WANTVR ) THEN
|
|
*
|
|
* Want right eigenvectors
|
|
* Copy Householder vectors to VR
|
|
*
|
|
SIDE = 'R'
|
|
CALL CLACPY( 'L', N, N, A, LDA, VR, LDVR )
|
|
*
|
|
* Generate unitary matrix in VR
|
|
* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
|
|
* (RWorkspace: none)
|
|
*
|
|
CALL CUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
|
|
$ LWORK-IWRK+1, IERR )
|
|
*
|
|
* Perform QR iteration, accumulating Schur vectors in VR
|
|
* (CWorkspace: need 1, prefer HSWORK (see comments) )
|
|
* (RWorkspace: none)
|
|
*
|
|
IWRK = ITAU
|
|
CALL CHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
|
|
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
|
|
*
|
|
ELSE
|
|
*
|
|
* Compute eigenvalues only
|
|
* If condition numbers desired, compute Schur form
|
|
*
|
|
IF( WNTSNN ) THEN
|
|
JOB = 'E'
|
|
ELSE
|
|
JOB = 'S'
|
|
END IF
|
|
*
|
|
* (CWorkspace: need 1, prefer HSWORK (see comments) )
|
|
* (RWorkspace: none)
|
|
*
|
|
IWRK = ITAU
|
|
CALL CHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
|
|
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
|
|
END IF
|
|
*
|
|
* If INFO .NE. 0 from CHSEQR, then quit
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ GO TO 50
|
|
*
|
|
IF( WANTVL .OR. WANTVR ) THEN
|
|
*
|
|
* Compute left and/or right eigenvectors
|
|
* (CWorkspace: need 2*N, prefer N + 2*N*NB)
|
|
* (RWorkspace: need N)
|
|
*
|
|
CALL CTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
|
|
$ N, NOUT, WORK( IWRK ), LWORK-IWRK+1,
|
|
$ RWORK, N, IERR )
|
|
END IF
|
|
*
|
|
* Compute condition numbers if desired
|
|
* (CWorkspace: need N*N+2*N unless SENSE = 'E')
|
|
* (RWorkspace: need 2*N unless SENSE = 'E')
|
|
*
|
|
IF( .NOT.WNTSNN ) THEN
|
|
CALL CTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
|
|
$ RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, RWORK,
|
|
$ ICOND )
|
|
END IF
|
|
*
|
|
IF( WANTVL ) THEN
|
|
*
|
|
* Undo balancing of left eigenvectors
|
|
*
|
|
CALL CGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
|
|
$ IERR )
|
|
*
|
|
* Normalize left eigenvectors and make largest component real
|
|
*
|
|
DO 20 I = 1, N
|
|
SCL = ONE / SCNRM2( N, VL( 1, I ), 1 )
|
|
CALL CSSCAL( N, SCL, VL( 1, I ), 1 )
|
|
DO 10 K = 1, N
|
|
RWORK( K ) = REAL( VL( K, I ) )**2 +
|
|
$ AIMAG( VL( K, I ) )**2
|
|
10 CONTINUE
|
|
K = ISAMAX( N, RWORK, 1 )
|
|
TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( K ) )
|
|
CALL CSCAL( N, TMP, VL( 1, I ), 1 )
|
|
VL( K, I ) = CMPLX( REAL( VL( K, I ) ), ZERO )
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
IF( WANTVR ) THEN
|
|
*
|
|
* Undo balancing of right eigenvectors
|
|
*
|
|
CALL CGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
|
|
$ IERR )
|
|
*
|
|
* Normalize right eigenvectors and make largest component real
|
|
*
|
|
DO 40 I = 1, N
|
|
SCL = ONE / SCNRM2( N, VR( 1, I ), 1 )
|
|
CALL CSSCAL( N, SCL, VR( 1, I ), 1 )
|
|
DO 30 K = 1, N
|
|
RWORK( K ) = REAL( VR( K, I ) )**2 +
|
|
$ AIMAG( VR( K, I ) )**2
|
|
30 CONTINUE
|
|
K = ISAMAX( N, RWORK, 1 )
|
|
TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( K ) )
|
|
CALL CSCAL( N, TMP, VR( 1, I ), 1 )
|
|
VR( K, I ) = CMPLX( REAL( VR( K, I ) ), ZERO )
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
* Undo scaling if necessary
|
|
*
|
|
50 CONTINUE
|
|
IF( SCALEA ) THEN
|
|
CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
|
|
$ MAX( N-INFO, 1 ), IERR )
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
|
|
$ CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
|
|
$ IERR )
|
|
ELSE
|
|
CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
|
|
END IF
|
|
END IF
|
|
*
|
|
WORK( 1 ) = MAXWRK
|
|
RETURN
|
|
*
|
|
* End of CGEEVX
|
|
*
|
|
END
|
|
|