Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

328 lines
9.8 KiB

*> \brief \b CGELQ
*
* Definition:
* ===========
*
* SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N, TSIZE, LWORK
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), T( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGELQ computes an LQ factorization of a complex M-by-N matrix A:
*>
*> A = ( L 0 ) * Q
*>
*> where:
*>
*> Q is a N-by-N orthogonal matrix;
*> L is a lower-triangular M-by-M matrix;
*> 0 is a M-by-(N-M) zero matrix, if M < N.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the elements on and below the diagonal of the array
*> contain the M-by-min(M,N) lower trapezoidal matrix L
*> (L is lower triangular if M <= N);
*> the elements above the diagonal are used to store part of the
*> data structure to represent Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX array, dimension (MAX(5,TSIZE))
*> On exit, if INFO = 0, T(1) returns optimal (or either minimal
*> or optimal, if query is assumed) TSIZE. See TSIZE for details.
*> Remaining T contains part of the data structure used to represent Q.
*> If one wants to apply or construct Q, then one needs to keep T
*> (in addition to A) and pass it to further subroutines.
*> \endverbatim
*>
*> \param[in] TSIZE
*> \verbatim
*> TSIZE is INTEGER
*> If TSIZE >= 5, the dimension of the array T.
*> If TSIZE = -1 or -2, then a workspace query is assumed. The routine
*> only calculates the sizes of the T and WORK arrays, returns these
*> values as the first entries of the T and WORK arrays, and no error
*> message related to T or WORK is issued by XERBLA.
*> If TSIZE = -1, the routine calculates optimal size of T for the
*> optimum performance and returns this value in T(1).
*> If TSIZE = -2, the routine calculates minimal size of T and
*> returns this value in T(1).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
*> or optimal, if query was assumed) LWORK.
*> See LWORK for details.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If LWORK = -1 or -2, then a workspace query is assumed. The routine
*> only calculates the sizes of the T and WORK arrays, returns these
*> values as the first entries of the T and WORK arrays, and no error
*> message related to T or WORK is issued by XERBLA.
*> If LWORK = -1, the routine calculates optimal size of WORK for the
*> optimal performance and returns this value in WORK(1).
*> If LWORK = -2, the routine calculates minimal size of WORK and
*> returns this value in WORK(1).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details
* ====================
*>
*> \verbatim
*>
*> The goal of the interface is to give maximum freedom to the developers for
*> creating any LQ factorization algorithm they wish. The triangular
*> (trapezoidal) L has to be stored in the lower part of A. The lower part of A
*> and the array T can be used to store any relevant information for applying or
*> constructing the Q factor. The WORK array can safely be discarded after exit.
*>
*> Caution: One should not expect the sizes of T and WORK to be the same from one
*> LAPACK implementation to the other, or even from one execution to the other.
*> A workspace query (for T and WORK) is needed at each execution. However,
*> for a given execution, the size of T and WORK are fixed and will not change
*> from one query to the next.
*>
*> \endverbatim
*>
*> \par Further Details particular to this LAPACK implementation:
* ==============================================================
*>
*> \verbatim
*>
*> These details are particular for this LAPACK implementation. Users should not
*> take them for granted. These details may change in the future, and are not likely
*> true for another LAPACK implementation. These details are relevant if one wants
*> to try to understand the code. They are not part of the interface.
*>
*> In this version,
*>
*> T(2): row block size (MB)
*> T(3): column block size (NB)
*> T(6:TSIZE): data structure needed for Q, computed by
*> CLASWLQ or CGELQT
*>
*> Depending on the matrix dimensions M and N, and row and column
*> block sizes MB and NB returned by ILAENV, CGELQ will use either
*> CLASWLQ (if the matrix is short-and-wide) or CGELQT to compute
*> the LQ factorization.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
$ INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, TSIZE, LWORK
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), T( * ), WORK( * )
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
LOGICAL LQUERY, LMINWS, MINT, MINW
INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWOPT, LWREQ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CGELQT, CLASWLQ, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, MOD
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
*
LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR.
$ LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
*
MINT = .FALSE.
MINW = .FALSE.
IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN
IF( TSIZE.NE.-1 ) MINT = .TRUE.
IF( LWORK.NE.-1 ) MINW = .TRUE.
END IF
*
* Determine the block size
*
IF( MIN( M, N ).GT.0 ) THEN
MB = ILAENV( 1, 'CGELQ ', ' ', M, N, 1, -1 )
NB = ILAENV( 1, 'CGELQ ', ' ', M, N, 2, -1 )
ELSE
MB = 1
NB = N
END IF
IF( MB.GT.MIN( M, N ) .OR. MB.LT.1 ) MB = 1
IF( NB.GT.N .OR. NB.LE.M ) NB = N
MINTSZ = M + 5
IF( NB.GT.M .AND. N.GT.M ) THEN
IF( MOD( N - M, NB - M ).EQ.0 ) THEN
NBLCKS = ( N - M ) / ( NB - M )
ELSE
NBLCKS = ( N - M ) / ( NB - M ) + 1
END IF
ELSE
NBLCKS = 1
END IF
*
* Determine if the workspace size satisfies minimal size
*
IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
LWMIN = MAX( 1, N )
LWOPT = MAX( 1, MB*N )
ELSE
LWMIN = MAX( 1, M )
LWOPT = MAX( 1, MB*M )
END IF
LMINWS = .FALSE.
IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.LWOPT )
$ .AND. ( LWORK.GE.LWMIN ) .AND. ( TSIZE.GE.MINTSZ )
$ .AND. ( .NOT.LQUERY ) ) THEN
IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN
LMINWS = .TRUE.
MB = 1
NB = N
END IF
IF( LWORK.LT.LWOPT ) THEN
LMINWS = .TRUE.
MB = 1
END IF
END IF
IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
LWREQ = MAX( 1, MB*N )
ELSE
LWREQ = MAX( 1, MB*M )
END IF
*
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 )
$ .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
INFO = -6
ELSE IF( ( LWORK.LT.LWREQ ) .AND .( .NOT.LQUERY )
$ .AND. ( .NOT.LMINWS ) ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
IF( MINT ) THEN
T( 1 ) = MINTSZ
ELSE
T( 1 ) = MB*M*NBLCKS + 5
END IF
T( 2 ) = MB
T( 3 ) = NB
IF( MINW ) THEN
WORK( 1 ) = LWMIN
ELSE
WORK( 1 ) = LWREQ
END IF
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGELQ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N ).EQ.0 ) THEN
RETURN
END IF
*
* The LQ Decomposition
*
IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
CALL CGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO )
ELSE
CALL CLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK,
$ LWORK, INFO )
END IF
*
WORK( 1 ) = LWREQ
*
RETURN
*
* End of CGELQ
*
END