You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
897 lines
31 KiB
897 lines
31 KiB
*> \brief \b CGGHD3
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CGGHD3 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgghd3.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgghd3.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgghd3.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
|
|
* $ LDQ, Z, LDZ, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER COMPQ, COMPZ
|
|
* INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
* $ Z( LDZ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*>
|
|
*> CGGHD3 reduces a pair of complex matrices (A,B) to generalized upper
|
|
*> Hessenberg form using unitary transformations, where A is a
|
|
*> general matrix and B is upper triangular. The form of the
|
|
*> generalized eigenvalue problem is
|
|
*> A*x = lambda*B*x,
|
|
*> and B is typically made upper triangular by computing its QR
|
|
*> factorization and moving the unitary matrix Q to the left side
|
|
*> of the equation.
|
|
*>
|
|
*> This subroutine simultaneously reduces A to a Hessenberg matrix H:
|
|
*> Q**H*A*Z = H
|
|
*> and transforms B to another upper triangular matrix T:
|
|
*> Q**H*B*Z = T
|
|
*> in order to reduce the problem to its standard form
|
|
*> H*y = lambda*T*y
|
|
*> where y = Z**H*x.
|
|
*>
|
|
*> The unitary matrices Q and Z are determined as products of Givens
|
|
*> rotations. They may either be formed explicitly, or they may be
|
|
*> postmultiplied into input matrices Q1 and Z1, so that
|
|
*>
|
|
*> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
|
|
*>
|
|
*> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
|
|
*>
|
|
*> If Q1 is the unitary matrix from the QR factorization of B in the
|
|
*> original equation A*x = lambda*B*x, then CGGHD3 reduces the original
|
|
*> problem to generalized Hessenberg form.
|
|
*>
|
|
*> This is a blocked variant of CGGHRD, using matrix-matrix
|
|
*> multiplications for parts of the computation to enhance performance.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] COMPQ
|
|
*> \verbatim
|
|
*> COMPQ is CHARACTER*1
|
|
*> = 'N': do not compute Q;
|
|
*> = 'I': Q is initialized to the unit matrix, and the
|
|
*> unitary matrix Q is returned;
|
|
*> = 'V': Q must contain a unitary matrix Q1 on entry,
|
|
*> and the product Q1*Q is returned.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] COMPZ
|
|
*> \verbatim
|
|
*> COMPZ is CHARACTER*1
|
|
*> = 'N': do not compute Z;
|
|
*> = 'I': Z is initialized to the unit matrix, and the
|
|
*> unitary matrix Z is returned;
|
|
*> = 'V': Z must contain a unitary matrix Z1 on entry,
|
|
*> and the product Z1*Z is returned.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*>
|
|
*> ILO and IHI mark the rows and columns of A which are to be
|
|
*> reduced. It is assumed that A is already upper triangular
|
|
*> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
|
|
*> normally set by a previous call to CGGBAL; otherwise they
|
|
*> should be set to 1 and N respectively.
|
|
*> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA, N)
|
|
*> On entry, the N-by-N general matrix to be reduced.
|
|
*> On exit, the upper triangle and the first subdiagonal of A
|
|
*> are overwritten with the upper Hessenberg matrix H, and the
|
|
*> rest is set to zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (LDB, N)
|
|
*> On entry, the N-by-N upper triangular matrix B.
|
|
*> On exit, the upper triangular matrix T = Q**H B Z. The
|
|
*> elements below the diagonal are set to zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ, N)
|
|
*> On entry, if COMPQ = 'V', the unitary matrix Q1, typically
|
|
*> from the QR factorization of B.
|
|
*> On exit, if COMPQ='I', the unitary matrix Q, and if
|
|
*> COMPQ = 'V', the product Q1*Q.
|
|
*> Not referenced if COMPQ='N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q.
|
|
*> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is COMPLEX array, dimension (LDZ, N)
|
|
*> On entry, if COMPZ = 'V', the unitary matrix Z1.
|
|
*> On exit, if COMPZ='I', the unitary matrix Z, and if
|
|
*> COMPZ = 'V', the product Z1*Z.
|
|
*> Not referenced if COMPZ='N'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z.
|
|
*> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (LWORK)
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK. LWORK >= 1.
|
|
*> For optimum performance LWORK >= 6*N*NB, where NB is the
|
|
*> optimal blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> This routine reduces A to Hessenberg form and maintains B in triangular form
|
|
*> using a blocked variant of Moler and Stewart's original algorithm,
|
|
*> as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
|
|
*> (BIT 2008).
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
|
|
$ LDQ, Z, LDZ, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
*
|
|
IMPLICIT NONE
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER COMPQ, COMPZ
|
|
INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
|
|
$ Z( LDZ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
COMPLEX CONE, CZERO
|
|
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
|
|
$ CZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ
|
|
CHARACTER*1 COMPQ2, COMPZ2
|
|
INTEGER COLA, I, IERR, J, J0, JCOL, JJ, JROW, K,
|
|
$ KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN,
|
|
$ NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ
|
|
REAL C
|
|
COMPLEX C1, C2, CTEMP, S, S1, S2, TEMP, TEMP1, TEMP2,
|
|
$ TEMP3
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
EXTERNAL ILAENV, LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CGGHRD, CLARTG, CLASET, CUNM22, CROT, CGEMM,
|
|
$ CGEMV, CTRMV, CLACPY, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC REAL, CMPLX, CONJG, MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and test the input parameters.
|
|
*
|
|
INFO = 0
|
|
NB = ILAENV( 1, 'CGGHD3', ' ', N, ILO, IHI, -1 )
|
|
LWKOPT = MAX( 6*N*NB, 1 )
|
|
WORK( 1 ) = CMPLX( LWKOPT )
|
|
INITQ = LSAME( COMPQ, 'I' )
|
|
WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
|
|
INITZ = LSAME( COMPZ, 'I' )
|
|
WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( ILO.LT.1 ) THEN
|
|
INFO = -4
|
|
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
|
|
INFO = -11
|
|
ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
|
|
INFO = -13
|
|
ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
|
|
INFO = -15
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CGGHD3', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize Q and Z if desired.
|
|
*
|
|
IF( INITQ )
|
|
$ CALL CLASET( 'All', N, N, CZERO, CONE, Q, LDQ )
|
|
IF( INITZ )
|
|
$ CALL CLASET( 'All', N, N, CZERO, CONE, Z, LDZ )
|
|
*
|
|
* Zero out lower triangle of B.
|
|
*
|
|
IF( N.GT.1 )
|
|
$ CALL CLASET( 'Lower', N-1, N-1, CZERO, CZERO, B(2, 1), LDB )
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
NH = IHI - ILO + 1
|
|
IF( NH.LE.1 ) THEN
|
|
WORK( 1 ) = CONE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Determine the blocksize.
|
|
*
|
|
NBMIN = ILAENV( 2, 'CGGHD3', ' ', N, ILO, IHI, -1 )
|
|
IF( NB.GT.1 .AND. NB.LT.NH ) THEN
|
|
*
|
|
* Determine when to use unblocked instead of blocked code.
|
|
*
|
|
NX = MAX( NB, ILAENV( 3, 'CGGHD3', ' ', N, ILO, IHI, -1 ) )
|
|
IF( NX.LT.NH ) THEN
|
|
*
|
|
* Determine if workspace is large enough for blocked code.
|
|
*
|
|
IF( LWORK.LT.LWKOPT ) THEN
|
|
*
|
|
* Not enough workspace to use optimal NB: determine the
|
|
* minimum value of NB, and reduce NB or force use of
|
|
* unblocked code.
|
|
*
|
|
NBMIN = MAX( 2, ILAENV( 2, 'CGGHD3', ' ', N, ILO, IHI,
|
|
$ -1 ) )
|
|
IF( LWORK.GE.6*N*NBMIN ) THEN
|
|
NB = LWORK / ( 6*N )
|
|
ELSE
|
|
NB = 1
|
|
END IF
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
|
|
*
|
|
* Use unblocked code below
|
|
*
|
|
JCOL = ILO
|
|
*
|
|
ELSE
|
|
*
|
|
* Use blocked code
|
|
*
|
|
KACC22 = ILAENV( 16, 'CGGHD3', ' ', N, ILO, IHI, -1 )
|
|
BLK22 = KACC22.EQ.2
|
|
DO JCOL = ILO, IHI-2, NB
|
|
NNB = MIN( NB, IHI-JCOL-1 )
|
|
*
|
|
* Initialize small unitary factors that will hold the
|
|
* accumulated Givens rotations in workspace.
|
|
* N2NB denotes the number of 2*NNB-by-2*NNB factors
|
|
* NBLST denotes the (possibly smaller) order of the last
|
|
* factor.
|
|
*
|
|
N2NB = ( IHI-JCOL-1 ) / NNB - 1
|
|
NBLST = IHI - JCOL - N2NB*NNB
|
|
CALL CLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK, NBLST )
|
|
PW = NBLST * NBLST + 1
|
|
DO I = 1, N2NB
|
|
CALL CLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
|
|
$ WORK( PW ), 2*NNB )
|
|
PW = PW + 4*NNB*NNB
|
|
END DO
|
|
*
|
|
* Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form.
|
|
*
|
|
DO J = JCOL, JCOL+NNB-1
|
|
*
|
|
* Reduce Jth column of A. Store cosines and sines in Jth
|
|
* column of A and B, respectively.
|
|
*
|
|
DO I = IHI, J+2, -1
|
|
TEMP = A( I-1, J )
|
|
CALL CLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) )
|
|
A( I, J ) = CMPLX( C )
|
|
B( I, J ) = S
|
|
END DO
|
|
*
|
|
* Accumulate Givens rotations into workspace array.
|
|
*
|
|
PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
|
|
LEN = 2 + J - JCOL
|
|
JROW = J + N2NB*NNB + 2
|
|
DO I = IHI, JROW, -1
|
|
CTEMP = A( I, J )
|
|
S = B( I, J )
|
|
DO JJ = PPW, PPW+LEN-1
|
|
TEMP = WORK( JJ + NBLST )
|
|
WORK( JJ + NBLST ) = CTEMP*TEMP - S*WORK( JJ )
|
|
WORK( JJ ) = CONJG( S )*TEMP + CTEMP*WORK( JJ )
|
|
END DO
|
|
LEN = LEN + 1
|
|
PPW = PPW - NBLST - 1
|
|
END DO
|
|
*
|
|
PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
|
|
J0 = JROW - NNB
|
|
DO JROW = J0, J+2, -NNB
|
|
PPW = PPWO
|
|
LEN = 2 + J - JCOL
|
|
DO I = JROW+NNB-1, JROW, -1
|
|
CTEMP = A( I, J )
|
|
S = B( I, J )
|
|
DO JJ = PPW, PPW+LEN-1
|
|
TEMP = WORK( JJ + 2*NNB )
|
|
WORK( JJ + 2*NNB ) = CTEMP*TEMP - S*WORK( JJ )
|
|
WORK( JJ ) = CONJG( S )*TEMP + CTEMP*WORK( JJ )
|
|
END DO
|
|
LEN = LEN + 1
|
|
PPW = PPW - 2*NNB - 1
|
|
END DO
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
*
|
|
* TOP denotes the number of top rows in A and B that will
|
|
* not be updated during the next steps.
|
|
*
|
|
IF( JCOL.LE.2 ) THEN
|
|
TOP = 0
|
|
ELSE
|
|
TOP = JCOL
|
|
END IF
|
|
*
|
|
* Propagate transformations through B and replace stored
|
|
* left sines/cosines by right sines/cosines.
|
|
*
|
|
DO JJ = N, J+1, -1
|
|
*
|
|
* Update JJth column of B.
|
|
*
|
|
DO I = MIN( JJ+1, IHI ), J+2, -1
|
|
CTEMP = A( I, J )
|
|
S = B( I, J )
|
|
TEMP = B( I, JJ )
|
|
B( I, JJ ) = CTEMP*TEMP - CONJG( S )*B( I-1, JJ )
|
|
B( I-1, JJ ) = S*TEMP + CTEMP*B( I-1, JJ )
|
|
END DO
|
|
*
|
|
* Annihilate B( JJ+1, JJ ).
|
|
*
|
|
IF( JJ.LT.IHI ) THEN
|
|
TEMP = B( JJ+1, JJ+1 )
|
|
CALL CLARTG( TEMP, B( JJ+1, JJ ), C, S,
|
|
$ B( JJ+1, JJ+1 ) )
|
|
B( JJ+1, JJ ) = CZERO
|
|
CALL CROT( JJ-TOP, B( TOP+1, JJ+1 ), 1,
|
|
$ B( TOP+1, JJ ), 1, C, S )
|
|
A( JJ+1, J ) = CMPLX( C )
|
|
B( JJ+1, J ) = -CONJG( S )
|
|
END IF
|
|
END DO
|
|
*
|
|
* Update A by transformations from right.
|
|
*
|
|
JJ = MOD( IHI-J-1, 3 )
|
|
DO I = IHI-J-3, JJ+1, -3
|
|
CTEMP = A( J+1+I, J )
|
|
S = -B( J+1+I, J )
|
|
C1 = A( J+2+I, J )
|
|
S1 = -B( J+2+I, J )
|
|
C2 = A( J+3+I, J )
|
|
S2 = -B( J+3+I, J )
|
|
*
|
|
DO K = TOP+1, IHI
|
|
TEMP = A( K, J+I )
|
|
TEMP1 = A( K, J+I+1 )
|
|
TEMP2 = A( K, J+I+2 )
|
|
TEMP3 = A( K, J+I+3 )
|
|
A( K, J+I+3 ) = C2*TEMP3 + CONJG( S2 )*TEMP2
|
|
TEMP2 = -S2*TEMP3 + C2*TEMP2
|
|
A( K, J+I+2 ) = C1*TEMP2 + CONJG( S1 )*TEMP1
|
|
TEMP1 = -S1*TEMP2 + C1*TEMP1
|
|
A( K, J+I+1 ) = CTEMP*TEMP1 + CONJG( S )*TEMP
|
|
A( K, J+I ) = -S*TEMP1 + CTEMP*TEMP
|
|
END DO
|
|
END DO
|
|
*
|
|
IF( JJ.GT.0 ) THEN
|
|
DO I = JJ, 1, -1
|
|
C = REAL( A( J+1+I, J ) )
|
|
CALL CROT( IHI-TOP, A( TOP+1, J+I+1 ), 1,
|
|
$ A( TOP+1, J+I ), 1, C,
|
|
$ -CONJG( B( J+1+I, J ) ) )
|
|
END DO
|
|
END IF
|
|
*
|
|
* Update (J+1)th column of A by transformations from left.
|
|
*
|
|
IF ( J .LT. JCOL + NNB - 1 ) THEN
|
|
LEN = 1 + J - JCOL
|
|
*
|
|
* Multiply with the trailing accumulated unitary
|
|
* matrix, which takes the form
|
|
*
|
|
* [ U11 U12 ]
|
|
* U = [ ],
|
|
* [ U21 U22 ]
|
|
*
|
|
* where U21 is a LEN-by-LEN matrix and U12 is lower
|
|
* triangular.
|
|
*
|
|
JROW = IHI - NBLST + 1
|
|
CALL CGEMV( 'Conjugate', NBLST, LEN, CONE, WORK,
|
|
$ NBLST, A( JROW, J+1 ), 1, CZERO,
|
|
$ WORK( PW ), 1 )
|
|
PPW = PW + LEN
|
|
DO I = JROW, JROW+NBLST-LEN-1
|
|
WORK( PPW ) = A( I, J+1 )
|
|
PPW = PPW + 1
|
|
END DO
|
|
CALL CTRMV( 'Lower', 'Conjugate', 'Non-unit',
|
|
$ NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST,
|
|
$ WORK( PW+LEN ), 1 )
|
|
CALL CGEMV( 'Conjugate', LEN, NBLST-LEN, CONE,
|
|
$ WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST,
|
|
$ A( JROW+NBLST-LEN, J+1 ), 1, CONE,
|
|
$ WORK( PW+LEN ), 1 )
|
|
PPW = PW
|
|
DO I = JROW, JROW+NBLST-1
|
|
A( I, J+1 ) = WORK( PPW )
|
|
PPW = PPW + 1
|
|
END DO
|
|
*
|
|
* Multiply with the other accumulated unitary
|
|
* matrices, which take the form
|
|
*
|
|
* [ U11 U12 0 ]
|
|
* [ ]
|
|
* U = [ U21 U22 0 ],
|
|
* [ ]
|
|
* [ 0 0 I ]
|
|
*
|
|
* where I denotes the (NNB-LEN)-by-(NNB-LEN) identity
|
|
* matrix, U21 is a LEN-by-LEN upper triangular matrix
|
|
* and U12 is an NNB-by-NNB lower triangular matrix.
|
|
*
|
|
PPWO = 1 + NBLST*NBLST
|
|
J0 = JROW - NNB
|
|
DO JROW = J0, JCOL+1, -NNB
|
|
PPW = PW + LEN
|
|
DO I = JROW, JROW+NNB-1
|
|
WORK( PPW ) = A( I, J+1 )
|
|
PPW = PPW + 1
|
|
END DO
|
|
PPW = PW
|
|
DO I = JROW+NNB, JROW+NNB+LEN-1
|
|
WORK( PPW ) = A( I, J+1 )
|
|
PPW = PPW + 1
|
|
END DO
|
|
CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', LEN,
|
|
$ WORK( PPWO + NNB ), 2*NNB, WORK( PW ),
|
|
$ 1 )
|
|
CALL CTRMV( 'Lower', 'Conjugate', 'Non-unit', NNB,
|
|
$ WORK( PPWO + 2*LEN*NNB ),
|
|
$ 2*NNB, WORK( PW + LEN ), 1 )
|
|
CALL CGEMV( 'Conjugate', NNB, LEN, CONE,
|
|
$ WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1,
|
|
$ CONE, WORK( PW ), 1 )
|
|
CALL CGEMV( 'Conjugate', LEN, NNB, CONE,
|
|
$ WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB,
|
|
$ A( JROW+NNB, J+1 ), 1, CONE,
|
|
$ WORK( PW+LEN ), 1 )
|
|
PPW = PW
|
|
DO I = JROW, JROW+LEN+NNB-1
|
|
A( I, J+1 ) = WORK( PPW )
|
|
PPW = PPW + 1
|
|
END DO
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
END IF
|
|
END DO
|
|
*
|
|
* Apply accumulated unitary matrices to A.
|
|
*
|
|
COLA = N - JCOL - NNB + 1
|
|
J = IHI - NBLST + 1
|
|
CALL CGEMM( 'Conjugate', 'No Transpose', NBLST,
|
|
$ COLA, NBLST, CONE, WORK, NBLST,
|
|
$ A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
|
|
$ NBLST )
|
|
CALL CLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST,
|
|
$ A( J, JCOL+NNB ), LDA )
|
|
PPWO = NBLST*NBLST + 1
|
|
J0 = J - NNB
|
|
DO J = J0, JCOL+1, -NNB
|
|
IF ( BLK22 ) THEN
|
|
*
|
|
* Exploit the structure of
|
|
*
|
|
* [ U11 U12 ]
|
|
* U = [ ]
|
|
* [ U21 U22 ],
|
|
*
|
|
* where all blocks are NNB-by-NNB, U21 is upper
|
|
* triangular and U12 is lower triangular.
|
|
*
|
|
CALL CUNM22( 'Left', 'Conjugate', 2*NNB, COLA, NNB,
|
|
$ NNB, WORK( PPWO ), 2*NNB,
|
|
$ A( J, JCOL+NNB ), LDA, WORK( PW ),
|
|
$ LWORK-PW+1, IERR )
|
|
ELSE
|
|
*
|
|
* Ignore the structure of U.
|
|
*
|
|
CALL CGEMM( 'Conjugate', 'No Transpose', 2*NNB,
|
|
$ COLA, 2*NNB, CONE, WORK( PPWO ), 2*NNB,
|
|
$ A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
|
|
$ 2*NNB )
|
|
CALL CLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB,
|
|
$ A( J, JCOL+NNB ), LDA )
|
|
END IF
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
*
|
|
* Apply accumulated unitary matrices to Q.
|
|
*
|
|
IF( WANTQ ) THEN
|
|
J = IHI - NBLST + 1
|
|
IF ( INITQ ) THEN
|
|
TOPQ = MAX( 2, J - JCOL + 1 )
|
|
NH = IHI - TOPQ + 1
|
|
ELSE
|
|
TOPQ = 1
|
|
NH = N
|
|
END IF
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', NH,
|
|
$ NBLST, NBLST, CONE, Q( TOPQ, J ), LDQ,
|
|
$ WORK, NBLST, CZERO, WORK( PW ), NH )
|
|
CALL CLACPY( 'All', NH, NBLST, WORK( PW ), NH,
|
|
$ Q( TOPQ, J ), LDQ )
|
|
PPWO = NBLST*NBLST + 1
|
|
J0 = J - NNB
|
|
DO J = J0, JCOL+1, -NNB
|
|
IF ( INITQ ) THEN
|
|
TOPQ = MAX( 2, J - JCOL + 1 )
|
|
NH = IHI - TOPQ + 1
|
|
END IF
|
|
IF ( BLK22 ) THEN
|
|
*
|
|
* Exploit the structure of U.
|
|
*
|
|
CALL CUNM22( 'Right', 'No Transpose', NH, 2*NNB,
|
|
$ NNB, NNB, WORK( PPWO ), 2*NNB,
|
|
$ Q( TOPQ, J ), LDQ, WORK( PW ),
|
|
$ LWORK-PW+1, IERR )
|
|
ELSE
|
|
*
|
|
* Ignore the structure of U.
|
|
*
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', NH,
|
|
$ 2*NNB, 2*NNB, CONE, Q( TOPQ, J ), LDQ,
|
|
$ WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
|
|
$ NH )
|
|
CALL CLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
|
|
$ Q( TOPQ, J ), LDQ )
|
|
END IF
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
END IF
|
|
*
|
|
* Accumulate right Givens rotations if required.
|
|
*
|
|
IF ( WANTZ .OR. TOP.GT.0 ) THEN
|
|
*
|
|
* Initialize small unitary factors that will hold the
|
|
* accumulated Givens rotations in workspace.
|
|
*
|
|
CALL CLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK,
|
|
$ NBLST )
|
|
PW = NBLST * NBLST + 1
|
|
DO I = 1, N2NB
|
|
CALL CLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
|
|
$ WORK( PW ), 2*NNB )
|
|
PW = PW + 4*NNB*NNB
|
|
END DO
|
|
*
|
|
* Accumulate Givens rotations into workspace array.
|
|
*
|
|
DO J = JCOL, JCOL+NNB-1
|
|
PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
|
|
LEN = 2 + J - JCOL
|
|
JROW = J + N2NB*NNB + 2
|
|
DO I = IHI, JROW, -1
|
|
CTEMP = A( I, J )
|
|
A( I, J ) = CZERO
|
|
S = B( I, J )
|
|
B( I, J ) = CZERO
|
|
DO JJ = PPW, PPW+LEN-1
|
|
TEMP = WORK( JJ + NBLST )
|
|
WORK( JJ + NBLST ) = CTEMP*TEMP -
|
|
$ CONJG( S )*WORK( JJ )
|
|
WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
|
|
END DO
|
|
LEN = LEN + 1
|
|
PPW = PPW - NBLST - 1
|
|
END DO
|
|
*
|
|
PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
|
|
J0 = JROW - NNB
|
|
DO JROW = J0, J+2, -NNB
|
|
PPW = PPWO
|
|
LEN = 2 + J - JCOL
|
|
DO I = JROW+NNB-1, JROW, -1
|
|
CTEMP = A( I, J )
|
|
A( I, J ) = CZERO
|
|
S = B( I, J )
|
|
B( I, J ) = CZERO
|
|
DO JJ = PPW, PPW+LEN-1
|
|
TEMP = WORK( JJ + 2*NNB )
|
|
WORK( JJ + 2*NNB ) = CTEMP*TEMP -
|
|
$ CONJG( S )*WORK( JJ )
|
|
WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
|
|
END DO
|
|
LEN = LEN + 1
|
|
PPW = PPW - 2*NNB - 1
|
|
END DO
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
*
|
|
CALL CLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
|
|
$ A( JCOL + 2, JCOL ), LDA )
|
|
CALL CLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
|
|
$ B( JCOL + 2, JCOL ), LDB )
|
|
END IF
|
|
*
|
|
* Apply accumulated unitary matrices to A and B.
|
|
*
|
|
IF ( TOP.GT.0 ) THEN
|
|
J = IHI - NBLST + 1
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
|
|
$ NBLST, NBLST, CONE, A( 1, J ), LDA,
|
|
$ WORK, NBLST, CZERO, WORK( PW ), TOP )
|
|
CALL CLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
|
|
$ A( 1, J ), LDA )
|
|
PPWO = NBLST*NBLST + 1
|
|
J0 = J - NNB
|
|
DO J = J0, JCOL+1, -NNB
|
|
IF ( BLK22 ) THEN
|
|
*
|
|
* Exploit the structure of U.
|
|
*
|
|
CALL CUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
|
|
$ NNB, NNB, WORK( PPWO ), 2*NNB,
|
|
$ A( 1, J ), LDA, WORK( PW ),
|
|
$ LWORK-PW+1, IERR )
|
|
ELSE
|
|
*
|
|
* Ignore the structure of U.
|
|
*
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
|
|
$ 2*NNB, 2*NNB, CONE, A( 1, J ), LDA,
|
|
$ WORK( PPWO ), 2*NNB, CZERO,
|
|
$ WORK( PW ), TOP )
|
|
CALL CLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
|
|
$ A( 1, J ), LDA )
|
|
END IF
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
*
|
|
J = IHI - NBLST + 1
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
|
|
$ NBLST, NBLST, CONE, B( 1, J ), LDB,
|
|
$ WORK, NBLST, CZERO, WORK( PW ), TOP )
|
|
CALL CLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
|
|
$ B( 1, J ), LDB )
|
|
PPWO = NBLST*NBLST + 1
|
|
J0 = J - NNB
|
|
DO J = J0, JCOL+1, -NNB
|
|
IF ( BLK22 ) THEN
|
|
*
|
|
* Exploit the structure of U.
|
|
*
|
|
CALL CUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
|
|
$ NNB, NNB, WORK( PPWO ), 2*NNB,
|
|
$ B( 1, J ), LDB, WORK( PW ),
|
|
$ LWORK-PW+1, IERR )
|
|
ELSE
|
|
*
|
|
* Ignore the structure of U.
|
|
*
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', TOP,
|
|
$ 2*NNB, 2*NNB, CONE, B( 1, J ), LDB,
|
|
$ WORK( PPWO ), 2*NNB, CZERO,
|
|
$ WORK( PW ), TOP )
|
|
CALL CLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
|
|
$ B( 1, J ), LDB )
|
|
END IF
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
END IF
|
|
*
|
|
* Apply accumulated unitary matrices to Z.
|
|
*
|
|
IF( WANTZ ) THEN
|
|
J = IHI - NBLST + 1
|
|
IF ( INITQ ) THEN
|
|
TOPQ = MAX( 2, J - JCOL + 1 )
|
|
NH = IHI - TOPQ + 1
|
|
ELSE
|
|
TOPQ = 1
|
|
NH = N
|
|
END IF
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', NH,
|
|
$ NBLST, NBLST, CONE, Z( TOPQ, J ), LDZ,
|
|
$ WORK, NBLST, CZERO, WORK( PW ), NH )
|
|
CALL CLACPY( 'All', NH, NBLST, WORK( PW ), NH,
|
|
$ Z( TOPQ, J ), LDZ )
|
|
PPWO = NBLST*NBLST + 1
|
|
J0 = J - NNB
|
|
DO J = J0, JCOL+1, -NNB
|
|
IF ( INITQ ) THEN
|
|
TOPQ = MAX( 2, J - JCOL + 1 )
|
|
NH = IHI - TOPQ + 1
|
|
END IF
|
|
IF ( BLK22 ) THEN
|
|
*
|
|
* Exploit the structure of U.
|
|
*
|
|
CALL CUNM22( 'Right', 'No Transpose', NH, 2*NNB,
|
|
$ NNB, NNB, WORK( PPWO ), 2*NNB,
|
|
$ Z( TOPQ, J ), LDZ, WORK( PW ),
|
|
$ LWORK-PW+1, IERR )
|
|
ELSE
|
|
*
|
|
* Ignore the structure of U.
|
|
*
|
|
CALL CGEMM( 'No Transpose', 'No Transpose', NH,
|
|
$ 2*NNB, 2*NNB, CONE, Z( TOPQ, J ), LDZ,
|
|
$ WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
|
|
$ NH )
|
|
CALL CLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
|
|
$ Z( TOPQ, J ), LDZ )
|
|
END IF
|
|
PPWO = PPWO + 4*NNB*NNB
|
|
END DO
|
|
END IF
|
|
END DO
|
|
END IF
|
|
*
|
|
* Use unblocked code to reduce the rest of the matrix
|
|
* Avoid re-initialization of modified Q and Z.
|
|
*
|
|
COMPQ2 = COMPQ
|
|
COMPZ2 = COMPZ
|
|
IF ( JCOL.NE.ILO ) THEN
|
|
IF ( WANTQ )
|
|
$ COMPQ2 = 'V'
|
|
IF ( WANTZ )
|
|
$ COMPZ2 = 'V'
|
|
END IF
|
|
*
|
|
IF ( JCOL.LT.IHI )
|
|
$ CALL CGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
|
|
$ LDQ, Z, LDZ, IERR )
|
|
WORK( 1 ) = CMPLX( LWKOPT )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CGGHD3
|
|
*
|
|
END
|
|
|