You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
11 KiB
394 lines
11 KiB
*> \brief \b CHETRI
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CHETRI + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX A( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CHETRI computes the inverse of a complex Hermitian indefinite matrix
|
|
*> A using the factorization A = U*D*U**H or A = L*D*L**H computed by
|
|
*> CHETRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the details of the factorization are stored
|
|
*> as an upper or lower triangular matrix.
|
|
*> = 'U': Upper triangular, form is A = U*D*U**H;
|
|
*> = 'L': Lower triangular, form is A = L*D*L**H.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the block diagonal matrix D and the multipliers
|
|
*> used to obtain the factor U or L as computed by CHETRF.
|
|
*>
|
|
*> On exit, if INFO = 0, the (Hermitian) inverse of the original
|
|
*> matrix. If UPLO = 'U', the upper triangular part of the
|
|
*> inverse is formed and the part of A below the diagonal is not
|
|
*> referenced; if UPLO = 'L' the lower triangular part of the
|
|
*> inverse is formed and the part of A above the diagonal is
|
|
*> not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> Details of the interchanges and the block structure of D
|
|
*> as determined by CHETRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
|
|
*> inverse could not be computed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexHEcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX A( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE
|
|
COMPLEX CONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ),
|
|
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER J, K, KP, KSTEP
|
|
REAL AK, AKP1, D, T
|
|
COMPLEX AKKP1, TEMP
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
COMPLEX CDOTC
|
|
EXTERNAL LSAME, CDOTC
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CCOPY, CHEMV, CSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, CONJG, MAX, REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CHETRI', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Check that the diagonal matrix D is nonsingular.
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Upper triangular storage: examine D from bottom to top
|
|
*
|
|
DO 10 INFO = N, 1, -1
|
|
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
|
|
$ RETURN
|
|
10 CONTINUE
|
|
ELSE
|
|
*
|
|
* Lower triangular storage: examine D from top to bottom.
|
|
*
|
|
DO 20 INFO = 1, N
|
|
IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
|
|
$ RETURN
|
|
20 CONTINUE
|
|
END IF
|
|
INFO = 0
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Compute inv(A) from the factorization A = U*D*U**H.
|
|
*
|
|
* K is the main loop index, increasing from 1 to N in steps of
|
|
* 1 or 2, depending on the size of the diagonal blocks.
|
|
*
|
|
K = 1
|
|
30 CONTINUE
|
|
*
|
|
* If K > N, exit from loop.
|
|
*
|
|
IF( K.GT.N )
|
|
$ GO TO 50
|
|
*
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
*
|
|
* 1 x 1 diagonal block
|
|
*
|
|
* Invert the diagonal block.
|
|
*
|
|
A( K, K ) = ONE / REAL( A( K, K ) )
|
|
*
|
|
* Compute column K of the inverse.
|
|
*
|
|
IF( K.GT.1 ) THEN
|
|
CALL CCOPY( K-1, A( 1, K ), 1, WORK, 1 )
|
|
CALL CHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, ZERO,
|
|
$ A( 1, K ), 1 )
|
|
A( K, K ) = A( K, K ) - REAL( CDOTC( K-1, WORK, 1, A( 1,
|
|
$ K ), 1 ) )
|
|
END IF
|
|
KSTEP = 1
|
|
ELSE
|
|
*
|
|
* 2 x 2 diagonal block
|
|
*
|
|
* Invert the diagonal block.
|
|
*
|
|
T = ABS( A( K, K+1 ) )
|
|
AK = REAL( A( K, K ) ) / T
|
|
AKP1 = REAL( A( K+1, K+1 ) ) / T
|
|
AKKP1 = A( K, K+1 ) / T
|
|
D = T*( AK*AKP1-ONE )
|
|
A( K, K ) = AKP1 / D
|
|
A( K+1, K+1 ) = AK / D
|
|
A( K, K+1 ) = -AKKP1 / D
|
|
*
|
|
* Compute columns K and K+1 of the inverse.
|
|
*
|
|
IF( K.GT.1 ) THEN
|
|
CALL CCOPY( K-1, A( 1, K ), 1, WORK, 1 )
|
|
CALL CHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, ZERO,
|
|
$ A( 1, K ), 1 )
|
|
A( K, K ) = A( K, K ) - REAL( CDOTC( K-1, WORK, 1, A( 1,
|
|
$ K ), 1 ) )
|
|
A( K, K+1 ) = A( K, K+1 ) -
|
|
$ CDOTC( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
|
|
CALL CCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
|
|
CALL CHEMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, ZERO,
|
|
$ A( 1, K+1 ), 1 )
|
|
A( K+1, K+1 ) = A( K+1, K+1 ) -
|
|
$ REAL( CDOTC( K-1, WORK, 1, A( 1, K+1 ),
|
|
$ 1 ) )
|
|
END IF
|
|
KSTEP = 2
|
|
END IF
|
|
*
|
|
KP = ABS( IPIV( K ) )
|
|
IF( KP.NE.K ) THEN
|
|
*
|
|
* Interchange rows and columns K and KP in the leading
|
|
* submatrix A(1:k+1,1:k+1)
|
|
*
|
|
CALL CSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
|
|
DO 40 J = KP + 1, K - 1
|
|
TEMP = CONJG( A( J, K ) )
|
|
A( J, K ) = CONJG( A( KP, J ) )
|
|
A( KP, J ) = TEMP
|
|
40 CONTINUE
|
|
A( KP, K ) = CONJG( A( KP, K ) )
|
|
TEMP = A( K, K )
|
|
A( K, K ) = A( KP, KP )
|
|
A( KP, KP ) = TEMP
|
|
IF( KSTEP.EQ.2 ) THEN
|
|
TEMP = A( K, K+1 )
|
|
A( K, K+1 ) = A( KP, K+1 )
|
|
A( KP, K+1 ) = TEMP
|
|
END IF
|
|
END IF
|
|
*
|
|
K = K + KSTEP
|
|
GO TO 30
|
|
50 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
* Compute inv(A) from the factorization A = L*D*L**H.
|
|
*
|
|
* K is the main loop index, increasing from 1 to N in steps of
|
|
* 1 or 2, depending on the size of the diagonal blocks.
|
|
*
|
|
K = N
|
|
60 CONTINUE
|
|
*
|
|
* If K < 1, exit from loop.
|
|
*
|
|
IF( K.LT.1 )
|
|
$ GO TO 80
|
|
*
|
|
IF( IPIV( K ).GT.0 ) THEN
|
|
*
|
|
* 1 x 1 diagonal block
|
|
*
|
|
* Invert the diagonal block.
|
|
*
|
|
A( K, K ) = ONE / REAL( A( K, K ) )
|
|
*
|
|
* Compute column K of the inverse.
|
|
*
|
|
IF( K.LT.N ) THEN
|
|
CALL CCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
|
|
CALL CHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK,
|
|
$ 1, ZERO, A( K+1, K ), 1 )
|
|
A( K, K ) = A( K, K ) - REAL( CDOTC( N-K, WORK, 1,
|
|
$ A( K+1, K ), 1 ) )
|
|
END IF
|
|
KSTEP = 1
|
|
ELSE
|
|
*
|
|
* 2 x 2 diagonal block
|
|
*
|
|
* Invert the diagonal block.
|
|
*
|
|
T = ABS( A( K, K-1 ) )
|
|
AK = REAL( A( K-1, K-1 ) ) / T
|
|
AKP1 = REAL( A( K, K ) ) / T
|
|
AKKP1 = A( K, K-1 ) / T
|
|
D = T*( AK*AKP1-ONE )
|
|
A( K-1, K-1 ) = AKP1 / D
|
|
A( K, K ) = AK / D
|
|
A( K, K-1 ) = -AKKP1 / D
|
|
*
|
|
* Compute columns K-1 and K of the inverse.
|
|
*
|
|
IF( K.LT.N ) THEN
|
|
CALL CCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
|
|
CALL CHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK,
|
|
$ 1, ZERO, A( K+1, K ), 1 )
|
|
A( K, K ) = A( K, K ) - REAL( CDOTC( N-K, WORK, 1,
|
|
$ A( K+1, K ), 1 ) )
|
|
A( K, K-1 ) = A( K, K-1 ) -
|
|
$ CDOTC( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
|
|
$ 1 )
|
|
CALL CCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
|
|
CALL CHEMV( UPLO, N-K, -CONE, A( K+1, K+1 ), LDA, WORK,
|
|
$ 1, ZERO, A( K+1, K-1 ), 1 )
|
|
A( K-1, K-1 ) = A( K-1, K-1 ) -
|
|
$ REAL( CDOTC( N-K, WORK, 1, A( K+1, K-1 ),
|
|
$ 1 ) )
|
|
END IF
|
|
KSTEP = 2
|
|
END IF
|
|
*
|
|
KP = ABS( IPIV( K ) )
|
|
IF( KP.NE.K ) THEN
|
|
*
|
|
* Interchange rows and columns K and KP in the trailing
|
|
* submatrix A(k-1:n,k-1:n)
|
|
*
|
|
IF( KP.LT.N )
|
|
$ CALL CSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
|
|
DO 70 J = K + 1, KP - 1
|
|
TEMP = CONJG( A( J, K ) )
|
|
A( J, K ) = CONJG( A( KP, J ) )
|
|
A( KP, J ) = TEMP
|
|
70 CONTINUE
|
|
A( KP, K ) = CONJG( A( KP, K ) )
|
|
TEMP = A( K, K )
|
|
A( K, K ) = A( KP, KP )
|
|
A( KP, KP ) = TEMP
|
|
IF( KSTEP.EQ.2 ) THEN
|
|
TEMP = A( K, K-1 )
|
|
A( K, K-1 ) = A( KP, K-1 )
|
|
A( KP, K-1 ) = TEMP
|
|
END IF
|
|
END IF
|
|
*
|
|
K = K - KSTEP
|
|
GO TO 60
|
|
80 CONTINUE
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CHETRI
|
|
*
|
|
END
|
|
|