You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
483 lines
14 KiB
483 lines
14 KiB
*> \brief \b CLAED8 used by CSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CLAED8 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed8.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed8.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed8.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMBDA,
|
|
* Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
|
|
* GIVCOL, GIVNUM, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
|
|
* REAL RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
|
|
* $ INDXQ( * ), PERM( * )
|
|
* REAL D( * ), DLAMBDA( * ), GIVNUM( 2, * ), W( * ),
|
|
* $ Z( * )
|
|
* COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CLAED8 merges the two sets of eigenvalues together into a single
|
|
*> sorted set. Then it tries to deflate the size of the problem.
|
|
*> There are two ways in which deflation can occur: when two or more
|
|
*> eigenvalues are close together or if there is a tiny element in the
|
|
*> Z vector. For each such occurrence the order of the related secular
|
|
*> equation problem is reduced by one.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[out] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> Contains the number of non-deflated eigenvalues.
|
|
*> This is the order of the related secular equation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] QSIZ
|
|
*> \verbatim
|
|
*> QSIZ is INTEGER
|
|
*> The dimension of the unitary matrix used to reduce
|
|
*> the dense or band matrix to tridiagonal form.
|
|
*> QSIZ >= N if ICOMPQ = 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ,N)
|
|
*> On entry, Q contains the eigenvectors of the partially solved
|
|
*> system which has been previously updated in matrix
|
|
*> multiplies with other partially solved eigensystems.
|
|
*> On exit, Q contains the trailing (N-K) updated eigenvectors
|
|
*> (those which were deflated) in its last N-K columns.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max( 1, N ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> On entry, D contains the eigenvalues of the two submatrices to
|
|
*> be combined. On exit, D contains the trailing (N-K) updated
|
|
*> eigenvalues (those which were deflated) sorted into increasing
|
|
*> order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] RHO
|
|
*> \verbatim
|
|
*> RHO is REAL
|
|
*> Contains the off diagonal element associated with the rank-1
|
|
*> cut which originally split the two submatrices which are now
|
|
*> being recombined. RHO is modified during the computation to
|
|
*> the value required by SLAED3.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CUTPNT
|
|
*> \verbatim
|
|
*> CUTPNT is INTEGER
|
|
*> Contains the location of the last eigenvalue in the leading
|
|
*> sub-matrix. MIN(1,N) <= CUTPNT <= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Z
|
|
*> \verbatim
|
|
*> Z is REAL array, dimension (N)
|
|
*> On input this vector contains the updating vector (the last
|
|
*> row of the first sub-eigenvector matrix and the first row of
|
|
*> the second sub-eigenvector matrix). The contents of Z are
|
|
*> destroyed during the updating process.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DLAMBDA
|
|
*> \verbatim
|
|
*> DLAMBDA is REAL array, dimension (N)
|
|
*> Contains a copy of the first K eigenvalues which will be used
|
|
*> by SLAED3 to form the secular equation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q2
|
|
*> \verbatim
|
|
*> Q2 is COMPLEX array, dimension (LDQ2,N)
|
|
*> If ICOMPQ = 0, Q2 is not referenced. Otherwise,
|
|
*> Contains a copy of the first K eigenvectors which will be used
|
|
*> by SLAED7 in a matrix multiply (SGEMM) to update the new
|
|
*> eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ2
|
|
*> \verbatim
|
|
*> LDQ2 is INTEGER
|
|
*> The leading dimension of the array Q2. LDQ2 >= max( 1, N ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is REAL array, dimension (N)
|
|
*> This will hold the first k values of the final
|
|
*> deflation-altered z-vector and will be passed to SLAED3.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INDXP
|
|
*> \verbatim
|
|
*> INDXP is INTEGER array, dimension (N)
|
|
*> This will contain the permutation used to place deflated
|
|
*> values of D at the end of the array. On output INDXP(1:K)
|
|
*> points to the nondeflated D-values and INDXP(K+1:N)
|
|
*> points to the deflated eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INDX
|
|
*> \verbatim
|
|
*> INDX is INTEGER array, dimension (N)
|
|
*> This will contain the permutation used to sort the contents of
|
|
*> D into ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INDXQ
|
|
*> \verbatim
|
|
*> INDXQ is INTEGER array, dimension (N)
|
|
*> This contains the permutation which separately sorts the two
|
|
*> sub-problems in D into ascending order. Note that elements in
|
|
*> the second half of this permutation must first have CUTPNT
|
|
*> added to their values in order to be accurate.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PERM
|
|
*> \verbatim
|
|
*> PERM is INTEGER array, dimension (N)
|
|
*> Contains the permutations (from deflation and sorting) to be
|
|
*> applied to each eigenblock.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] GIVPTR
|
|
*> \verbatim
|
|
*> GIVPTR is INTEGER
|
|
*> Contains the number of Givens rotations which took place in
|
|
*> this subproblem.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] GIVCOL
|
|
*> \verbatim
|
|
*> GIVCOL is INTEGER array, dimension (2, N)
|
|
*> Each pair of numbers indicates a pair of columns to take place
|
|
*> in a Givens rotation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] GIVNUM
|
|
*> \verbatim
|
|
*> GIVNUM is REAL array, dimension (2, N)
|
|
*> Each number indicates the S value to be used in the
|
|
*> corresponding Givens rotation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMBDA,
|
|
$ Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
|
|
$ GIVCOL, GIVNUM, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
|
|
REAL RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
|
|
$ INDXQ( * ), PERM( * )
|
|
REAL D( * ), DLAMBDA( * ), GIVNUM( 2, * ), W( * ),
|
|
$ Z( * )
|
|
COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL MONE, ZERO, ONE, TWO, EIGHT
|
|
PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
|
|
$ TWO = 2.0E0, EIGHT = 8.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
|
|
REAL C, EPS, S, T, TAU, TOL
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ISAMAX
|
|
REAL SLAMCH, SLAPY2
|
|
EXTERNAL ISAMAX, SLAMCH, SLAPY2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL,
|
|
$ XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( QSIZ.LT.N ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
|
|
INFO = -8
|
|
ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
|
|
INFO = -12
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CLAED8', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Need to initialize GIVPTR to O here in case of quick exit
|
|
* to prevent an unspecified code behavior (usually sigfault)
|
|
* when IWORK array on entry to *stedc is not zeroed
|
|
* (or at least some IWORK entries which used in *laed7 for GIVPTR).
|
|
*
|
|
GIVPTR = 0
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
N1 = CUTPNT
|
|
N2 = N - N1
|
|
N1P1 = N1 + 1
|
|
*
|
|
IF( RHO.LT.ZERO ) THEN
|
|
CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
|
|
END IF
|
|
*
|
|
* Normalize z so that norm(z) = 1
|
|
*
|
|
T = ONE / SQRT( TWO )
|
|
DO 10 J = 1, N
|
|
INDX( J ) = J
|
|
10 CONTINUE
|
|
CALL SSCAL( N, T, Z, 1 )
|
|
RHO = ABS( TWO*RHO )
|
|
*
|
|
* Sort the eigenvalues into increasing order
|
|
*
|
|
DO 20 I = CUTPNT + 1, N
|
|
INDXQ( I ) = INDXQ( I ) + CUTPNT
|
|
20 CONTINUE
|
|
DO 30 I = 1, N
|
|
DLAMBDA( I ) = D( INDXQ( I ) )
|
|
W( I ) = Z( INDXQ( I ) )
|
|
30 CONTINUE
|
|
I = 1
|
|
J = CUTPNT + 1
|
|
CALL SLAMRG( N1, N2, DLAMBDA, 1, 1, INDX )
|
|
DO 40 I = 1, N
|
|
D( I ) = DLAMBDA( INDX( I ) )
|
|
Z( I ) = W( INDX( I ) )
|
|
40 CONTINUE
|
|
*
|
|
* Calculate the allowable deflation tolerance
|
|
*
|
|
IMAX = ISAMAX( N, Z, 1 )
|
|
JMAX = ISAMAX( N, D, 1 )
|
|
EPS = SLAMCH( 'Epsilon' )
|
|
TOL = EIGHT*EPS*ABS( D( JMAX ) )
|
|
*
|
|
* If the rank-1 modifier is small enough, no more needs to be done
|
|
* -- except to reorganize Q so that its columns correspond with the
|
|
* elements in D.
|
|
*
|
|
IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
|
|
K = 0
|
|
DO 50 J = 1, N
|
|
PERM( J ) = INDXQ( INDX( J ) )
|
|
CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
|
|
50 CONTINUE
|
|
CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* If there are multiple eigenvalues then the problem deflates. Here
|
|
* the number of equal eigenvalues are found. As each equal
|
|
* eigenvalue is found, an elementary reflector is computed to rotate
|
|
* the corresponding eigensubspace so that the corresponding
|
|
* components of Z are zero in this new basis.
|
|
*
|
|
K = 0
|
|
K2 = N + 1
|
|
DO 60 J = 1, N
|
|
IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
|
|
*
|
|
* Deflate due to small z component.
|
|
*
|
|
K2 = K2 - 1
|
|
INDXP( K2 ) = J
|
|
IF( J.EQ.N )
|
|
$ GO TO 100
|
|
ELSE
|
|
JLAM = J
|
|
GO TO 70
|
|
END IF
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
J = J + 1
|
|
IF( J.GT.N )
|
|
$ GO TO 90
|
|
IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
|
|
*
|
|
* Deflate due to small z component.
|
|
*
|
|
K2 = K2 - 1
|
|
INDXP( K2 ) = J
|
|
ELSE
|
|
*
|
|
* Check if eigenvalues are close enough to allow deflation.
|
|
*
|
|
S = Z( JLAM )
|
|
C = Z( J )
|
|
*
|
|
* Find sqrt(a**2+b**2) without overflow or
|
|
* destructive underflow.
|
|
*
|
|
TAU = SLAPY2( C, S )
|
|
T = D( J ) - D( JLAM )
|
|
C = C / TAU
|
|
S = -S / TAU
|
|
IF( ABS( T*C*S ).LE.TOL ) THEN
|
|
*
|
|
* Deflation is possible.
|
|
*
|
|
Z( J ) = TAU
|
|
Z( JLAM ) = ZERO
|
|
*
|
|
* Record the appropriate Givens rotation
|
|
*
|
|
GIVPTR = GIVPTR + 1
|
|
GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
|
|
GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
|
|
GIVNUM( 1, GIVPTR ) = C
|
|
GIVNUM( 2, GIVPTR ) = S
|
|
CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
|
|
$ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
|
|
T = D( JLAM )*C*C + D( J )*S*S
|
|
D( J ) = D( JLAM )*S*S + D( J )*C*C
|
|
D( JLAM ) = T
|
|
K2 = K2 - 1
|
|
I = 1
|
|
80 CONTINUE
|
|
IF( K2+I.LE.N ) THEN
|
|
IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
|
|
INDXP( K2+I-1 ) = INDXP( K2+I )
|
|
INDXP( K2+I ) = JLAM
|
|
I = I + 1
|
|
GO TO 80
|
|
ELSE
|
|
INDXP( K2+I-1 ) = JLAM
|
|
END IF
|
|
ELSE
|
|
INDXP( K2+I-1 ) = JLAM
|
|
END IF
|
|
JLAM = J
|
|
ELSE
|
|
K = K + 1
|
|
W( K ) = Z( JLAM )
|
|
DLAMBDA( K ) = D( JLAM )
|
|
INDXP( K ) = JLAM
|
|
JLAM = J
|
|
END IF
|
|
END IF
|
|
GO TO 70
|
|
90 CONTINUE
|
|
*
|
|
* Record the last eigenvalue.
|
|
*
|
|
K = K + 1
|
|
W( K ) = Z( JLAM )
|
|
DLAMBDA( K ) = D( JLAM )
|
|
INDXP( K ) = JLAM
|
|
*
|
|
100 CONTINUE
|
|
*
|
|
* Sort the eigenvalues and corresponding eigenvectors into DLAMBDA
|
|
* and Q2 respectively. The eigenvalues/vectors which were not
|
|
* deflated go into the first K slots of DLAMBDA and Q2 respectively,
|
|
* while those which were deflated go into the last N - K slots.
|
|
*
|
|
DO 110 J = 1, N
|
|
JP = INDXP( J )
|
|
DLAMBDA( J ) = D( JP )
|
|
PERM( J ) = INDXQ( INDX( JP ) )
|
|
CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
|
|
110 CONTINUE
|
|
*
|
|
* The deflated eigenvalues and their corresponding vectors go back
|
|
* into the last N - K slots of D and Q respectively.
|
|
*
|
|
IF( K.LT.N ) THEN
|
|
CALL SCOPY( N-K, DLAMBDA( K+1 ), 1, D( K+1 ), 1 )
|
|
CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ),
|
|
$ LDQ )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CLAED8
|
|
*
|
|
END
|
|
|