You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
9.8 KiB
318 lines
9.8 KiB
*> \brief \b CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CLAGTM + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clagtm.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clagtm.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clagtm.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
|
|
* B, LDB )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER TRANS
|
|
* INTEGER LDB, LDX, N, NRHS
|
|
* REAL ALPHA, BETA
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
|
|
* $ X( LDX, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CLAGTM performs a matrix-vector product of the form
|
|
*>
|
|
*> B := alpha * A * X + beta * B
|
|
*>
|
|
*> where A is a tridiagonal matrix of order N, B and X are N by NRHS
|
|
*> matrices, and alpha and beta are real scalars, each of which may be
|
|
*> 0., 1., or -1.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> Specifies the operation applied to A.
|
|
*> = 'N': No transpose, B := alpha * A * X + beta * B
|
|
*> = 'T': Transpose, B := alpha * A**T * X + beta * B
|
|
*> = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand sides, i.e., the number of columns
|
|
*> of the matrices X and B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is REAL
|
|
*> The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
|
|
*> it is assumed to be 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DL
|
|
*> \verbatim
|
|
*> DL is COMPLEX array, dimension (N-1)
|
|
*> The (n-1) sub-diagonal elements of T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is COMPLEX array, dimension (N)
|
|
*> The diagonal elements of T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DU
|
|
*> \verbatim
|
|
*> DU is COMPLEX array, dimension (N-1)
|
|
*> The (n-1) super-diagonal elements of T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] X
|
|
*> \verbatim
|
|
*> X is COMPLEX array, dimension (LDX,NRHS)
|
|
*> The N by NRHS matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX
|
|
*> \verbatim
|
|
*> LDX is INTEGER
|
|
*> The leading dimension of the array X. LDX >= max(N,1).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BETA
|
|
*> \verbatim
|
|
*> BETA is REAL
|
|
*> The scalar beta. BETA must be 0., 1., or -1.; otherwise,
|
|
*> it is assumed to be 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (LDB,NRHS)
|
|
*> On entry, the N by NRHS matrix B.
|
|
*> On exit, B is overwritten by the matrix expression
|
|
*> B := alpha * A * X + beta * B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(N,1).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
|
|
$ B, LDB )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER TRANS
|
|
INTEGER LDB, LDX, N, NRHS
|
|
REAL ALPHA, BETA
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
|
|
$ X( LDX, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC CONJG
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Multiply B by BETA if BETA.NE.1.
|
|
*
|
|
IF( BETA.EQ.ZERO ) THEN
|
|
DO 20 J = 1, NRHS
|
|
DO 10 I = 1, N
|
|
B( I, J ) = ZERO
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
ELSE IF( BETA.EQ.-ONE ) THEN
|
|
DO 40 J = 1, NRHS
|
|
DO 30 I = 1, N
|
|
B( I, J ) = -B( I, J )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
END IF
|
|
*
|
|
IF( ALPHA.EQ.ONE ) THEN
|
|
IF( LSAME( TRANS, 'N' ) ) THEN
|
|
*
|
|
* Compute B := B + A*X
|
|
*
|
|
DO 60 J = 1, NRHS
|
|
IF( N.EQ.1 ) THEN
|
|
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
|
|
ELSE
|
|
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
|
|
$ DU( 1 )*X( 2, J )
|
|
B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
|
|
$ D( N )*X( N, J )
|
|
DO 50 I = 2, N - 1
|
|
B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
|
|
$ D( I )*X( I, J ) + DU( I )*X( I+1, J )
|
|
50 CONTINUE
|
|
END IF
|
|
60 CONTINUE
|
|
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
|
|
*
|
|
* Compute B := B + A**T * X
|
|
*
|
|
DO 80 J = 1, NRHS
|
|
IF( N.EQ.1 ) THEN
|
|
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
|
|
ELSE
|
|
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
|
|
$ DL( 1 )*X( 2, J )
|
|
B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
|
|
$ D( N )*X( N, J )
|
|
DO 70 I = 2, N - 1
|
|
B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
|
|
$ D( I )*X( I, J ) + DL( I )*X( I+1, J )
|
|
70 CONTINUE
|
|
END IF
|
|
80 CONTINUE
|
|
ELSE IF( LSAME( TRANS, 'C' ) ) THEN
|
|
*
|
|
* Compute B := B + A**H * X
|
|
*
|
|
DO 100 J = 1, NRHS
|
|
IF( N.EQ.1 ) THEN
|
|
B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J )
|
|
ELSE
|
|
B( 1, J ) = B( 1, J ) + CONJG( D( 1 ) )*X( 1, J ) +
|
|
$ CONJG( DL( 1 ) )*X( 2, J )
|
|
B( N, J ) = B( N, J ) + CONJG( DU( N-1 ) )*
|
|
$ X( N-1, J ) + CONJG( D( N ) )*X( N, J )
|
|
DO 90 I = 2, N - 1
|
|
B( I, J ) = B( I, J ) + CONJG( DU( I-1 ) )*
|
|
$ X( I-1, J ) + CONJG( D( I ) )*
|
|
$ X( I, J ) + CONJG( DL( I ) )*
|
|
$ X( I+1, J )
|
|
90 CONTINUE
|
|
END IF
|
|
100 CONTINUE
|
|
END IF
|
|
ELSE IF( ALPHA.EQ.-ONE ) THEN
|
|
IF( LSAME( TRANS, 'N' ) ) THEN
|
|
*
|
|
* Compute B := B - A*X
|
|
*
|
|
DO 120 J = 1, NRHS
|
|
IF( N.EQ.1 ) THEN
|
|
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
|
|
ELSE
|
|
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
|
|
$ DU( 1 )*X( 2, J )
|
|
B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
|
|
$ D( N )*X( N, J )
|
|
DO 110 I = 2, N - 1
|
|
B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
|
|
$ D( I )*X( I, J ) - DU( I )*X( I+1, J )
|
|
110 CONTINUE
|
|
END IF
|
|
120 CONTINUE
|
|
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
|
|
*
|
|
* Compute B := B - A**T*X
|
|
*
|
|
DO 140 J = 1, NRHS
|
|
IF( N.EQ.1 ) THEN
|
|
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
|
|
ELSE
|
|
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
|
|
$ DL( 1 )*X( 2, J )
|
|
B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
|
|
$ D( N )*X( N, J )
|
|
DO 130 I = 2, N - 1
|
|
B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
|
|
$ D( I )*X( I, J ) - DL( I )*X( I+1, J )
|
|
130 CONTINUE
|
|
END IF
|
|
140 CONTINUE
|
|
ELSE IF( LSAME( TRANS, 'C' ) ) THEN
|
|
*
|
|
* Compute B := B - A**H*X
|
|
*
|
|
DO 160 J = 1, NRHS
|
|
IF( N.EQ.1 ) THEN
|
|
B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J )
|
|
ELSE
|
|
B( 1, J ) = B( 1, J ) - CONJG( D( 1 ) )*X( 1, J ) -
|
|
$ CONJG( DL( 1 ) )*X( 2, J )
|
|
B( N, J ) = B( N, J ) - CONJG( DU( N-1 ) )*
|
|
$ X( N-1, J ) - CONJG( D( N ) )*X( N, J )
|
|
DO 150 I = 2, N - 1
|
|
B( I, J ) = B( I, J ) - CONJG( DU( I-1 ) )*
|
|
$ X( I-1, J ) - CONJG( D( I ) )*
|
|
$ X( I, J ) - CONJG( DL( I ) )*
|
|
$ X( I+1, J )
|
|
150 CONTINUE
|
|
END IF
|
|
160 CONTINUE
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of CLAGTM
|
|
*
|
|
END
|
|
|