You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
970 lines
32 KiB
970 lines
32 KiB
*> \brief \b CLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CLAHEF + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, KB, LDA, LDW, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IPIV( * )
|
|
* COMPLEX A( LDA, * ), W( LDW, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CLAHEF computes a partial factorization of a complex Hermitian
|
|
*> matrix A using the Bunch-Kaufman diagonal pivoting method. The
|
|
*> partial factorization has the form:
|
|
*>
|
|
*> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
|
|
*> ( 0 U22 ) ( 0 D ) ( U12**H U22**H )
|
|
*>
|
|
*> A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
|
|
*> ( L21 I ) ( 0 A22 ) ( 0 I )
|
|
*>
|
|
*> where the order of D is at most NB. The actual order is returned in
|
|
*> the argument KB, and is either NB or NB-1, or N if N <= NB.
|
|
*> Note that U**H denotes the conjugate transpose of U.
|
|
*>
|
|
*> CLAHEF is an auxiliary routine called by CHETRF. It uses blocked code
|
|
*> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
|
|
*> A22 (if UPLO = 'L').
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the upper or lower triangular part of the
|
|
*> Hermitian matrix A is stored:
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NB
|
|
*> \verbatim
|
|
*> NB is INTEGER
|
|
*> The maximum number of columns of the matrix A that should be
|
|
*> factored. NB should be at least 2 to allow for 2-by-2 pivot
|
|
*> blocks.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] KB
|
|
*> \verbatim
|
|
*> KB is INTEGER
|
|
*> The number of columns of A that were actually factored.
|
|
*> KB is either NB-1 or NB, or N if N <= NB.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
|
|
*> n-by-n upper triangular part of A contains the upper
|
|
*> triangular part of the matrix A, and the strictly lower
|
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
|
*> leading n-by-n lower triangular part of A contains the lower
|
|
*> triangular part of the matrix A, and the strictly upper
|
|
*> triangular part of A is not referenced.
|
|
*> On exit, A contains details of the partial factorization.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IPIV
|
|
*> \verbatim
|
|
*> IPIV is INTEGER array, dimension (N)
|
|
*> Details of the interchanges and the block structure of D.
|
|
*>
|
|
*> If UPLO = 'U':
|
|
*> Only the last KB elements of IPIV are set.
|
|
*>
|
|
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
|
|
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
|
|
*>
|
|
*> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
|
|
*> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
|
|
*> is a 2-by-2 diagonal block.
|
|
*>
|
|
*> If UPLO = 'L':
|
|
*> Only the first KB elements of IPIV are set.
|
|
*>
|
|
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
|
|
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
|
|
*>
|
|
*> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
|
|
*> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
|
|
*> is a 2-by-2 diagonal block.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is COMPLEX array, dimension (LDW,NB)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDW
|
|
*> \verbatim
|
|
*> LDW is INTEGER
|
|
*> The leading dimension of the array W. LDW >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
|
|
*> has been completed, but the block diagonal matrix D is
|
|
*> exactly singular.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexHEcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> November 2013, Igor Kozachenko,
|
|
*> Computer Science Division,
|
|
*> University of California, Berkeley
|
|
*> \endverbatim
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, KB, LDA, LDW, N, NB
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IPIV( * )
|
|
COMPLEX A( LDA, * ), W( LDW, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
COMPLEX CONE
|
|
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
|
|
REAL EIGHT, SEVTEN
|
|
PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
|
|
$ KSTEP, KW
|
|
REAL ABSAKK, ALPHA, COLMAX, R1, ROWMAX, T
|
|
COMPLEX D11, D21, D22, Z
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ICAMAX
|
|
EXTERNAL LSAME, ICAMAX
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CCOPY, CGEMM, CGEMV, CLACGV, CSSCAL, CSWAP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, AIMAG, CONJG, MAX, MIN, REAL, SQRT
|
|
* ..
|
|
* .. Statement Functions ..
|
|
REAL CABS1
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) )
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
*
|
|
* Initialize ALPHA for use in choosing pivot block size.
|
|
*
|
|
ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
* Factorize the trailing columns of A using the upper triangle
|
|
* of A and working backwards, and compute the matrix W = U12*D
|
|
* for use in updating A11 (note that conjg(W) is actually stored)
|
|
*
|
|
* K is the main loop index, decreasing from N in steps of 1 or 2
|
|
*
|
|
K = N
|
|
10 CONTINUE
|
|
*
|
|
* KW is the column of W which corresponds to column K of A
|
|
*
|
|
KW = NB + K - N
|
|
*
|
|
* Exit from loop
|
|
*
|
|
IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
|
|
$ GO TO 30
|
|
*
|
|
KSTEP = 1
|
|
*
|
|
* Copy column K of A to column KW of W and update it
|
|
*
|
|
CALL CCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
|
|
W( K, KW ) = REAL( A( K, K ) )
|
|
IF( K.LT.N ) THEN
|
|
CALL CGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
|
|
$ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
|
|
W( K, KW ) = REAL( W( K, KW ) )
|
|
END IF
|
|
*
|
|
* Determine rows and columns to be interchanged and whether
|
|
* a 1-by-1 or 2-by-2 pivot block will be used
|
|
*
|
|
ABSAKK = ABS( REAL( W( K, KW ) ) )
|
|
*
|
|
* IMAX is the row-index of the largest off-diagonal element in
|
|
* column K, and COLMAX is its absolute value.
|
|
* Determine both COLMAX and IMAX.
|
|
*
|
|
IF( K.GT.1 ) THEN
|
|
IMAX = ICAMAX( K-1, W( 1, KW ), 1 )
|
|
COLMAX = CABS1( W( IMAX, KW ) )
|
|
ELSE
|
|
COLMAX = ZERO
|
|
END IF
|
|
*
|
|
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
|
|
*
|
|
* Column K is zero or underflow: set INFO and continue
|
|
*
|
|
IF( INFO.EQ.0 )
|
|
$ INFO = K
|
|
KP = K
|
|
A( K, K ) = REAL( A( K, K ) )
|
|
ELSE
|
|
*
|
|
* ============================================================
|
|
*
|
|
* BEGIN pivot search
|
|
*
|
|
* Case(1)
|
|
IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
|
|
*
|
|
* no interchange, use 1-by-1 pivot block
|
|
*
|
|
KP = K
|
|
ELSE
|
|
*
|
|
* BEGIN pivot search along IMAX row
|
|
*
|
|
*
|
|
* Copy column IMAX to column KW-1 of W and update it
|
|
*
|
|
CALL CCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
|
|
W( IMAX, KW-1 ) = REAL( A( IMAX, IMAX ) )
|
|
CALL CCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
|
|
$ W( IMAX+1, KW-1 ), 1 )
|
|
CALL CLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
|
|
IF( K.LT.N ) THEN
|
|
CALL CGEMV( 'No transpose', K, N-K, -CONE,
|
|
$ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
|
|
$ CONE, W( 1, KW-1 ), 1 )
|
|
W( IMAX, KW-1 ) = REAL( W( IMAX, KW-1 ) )
|
|
END IF
|
|
*
|
|
* JMAX is the column-index of the largest off-diagonal
|
|
* element in row IMAX, and ROWMAX is its absolute value.
|
|
* Determine only ROWMAX.
|
|
*
|
|
JMAX = IMAX + ICAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
|
|
ROWMAX = CABS1( W( JMAX, KW-1 ) )
|
|
IF( IMAX.GT.1 ) THEN
|
|
JMAX = ICAMAX( IMAX-1, W( 1, KW-1 ), 1 )
|
|
ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
|
|
END IF
|
|
*
|
|
* Case(2)
|
|
IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
|
|
*
|
|
* no interchange, use 1-by-1 pivot block
|
|
*
|
|
KP = K
|
|
*
|
|
* Case(3)
|
|
ELSE IF( ABS( REAL( W( IMAX, KW-1 ) ) ).GE.ALPHA*ROWMAX )
|
|
$ THEN
|
|
*
|
|
* interchange rows and columns K and IMAX, use 1-by-1
|
|
* pivot block
|
|
*
|
|
KP = IMAX
|
|
*
|
|
* copy column KW-1 of W to column KW of W
|
|
*
|
|
CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
|
|
*
|
|
* Case(4)
|
|
ELSE
|
|
*
|
|
* interchange rows and columns K-1 and IMAX, use 2-by-2
|
|
* pivot block
|
|
*
|
|
KP = IMAX
|
|
KSTEP = 2
|
|
END IF
|
|
*
|
|
*
|
|
* END pivot search along IMAX row
|
|
*
|
|
END IF
|
|
*
|
|
* END pivot search
|
|
*
|
|
* ============================================================
|
|
*
|
|
* KK is the column of A where pivoting step stopped
|
|
*
|
|
KK = K - KSTEP + 1
|
|
*
|
|
* KKW is the column of W which corresponds to column KK of A
|
|
*
|
|
KKW = NB + KK - N
|
|
*
|
|
* Interchange rows and columns KP and KK.
|
|
* Updated column KP is already stored in column KKW of W.
|
|
*
|
|
IF( KP.NE.KK ) THEN
|
|
*
|
|
* Copy non-updated column KK to column KP of submatrix A
|
|
* at step K. No need to copy element into column K
|
|
* (or K and K-1 for 2-by-2 pivot) of A, since these columns
|
|
* will be later overwritten.
|
|
*
|
|
A( KP, KP ) = REAL( A( KK, KK ) )
|
|
CALL CCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
|
|
$ LDA )
|
|
CALL CLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
|
|
IF( KP.GT.1 )
|
|
$ CALL CCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
|
|
*
|
|
* Interchange rows KK and KP in last K+1 to N columns of A
|
|
* (columns K (or K and K-1 for 2-by-2 pivot) of A will be
|
|
* later overwritten). Interchange rows KK and KP
|
|
* in last KKW to NB columns of W.
|
|
*
|
|
IF( K.LT.N )
|
|
$ CALL CSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
|
|
$ LDA )
|
|
CALL CSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
|
|
$ LDW )
|
|
END IF
|
|
*
|
|
IF( KSTEP.EQ.1 ) THEN
|
|
*
|
|
* 1-by-1 pivot block D(k): column kw of W now holds
|
|
*
|
|
* W(kw) = U(k)*D(k),
|
|
*
|
|
* where U(k) is the k-th column of U
|
|
*
|
|
* (1) Store subdiag. elements of column U(k)
|
|
* and 1-by-1 block D(k) in column k of A.
|
|
* (NOTE: Diagonal element U(k,k) is a UNIT element
|
|
* and not stored)
|
|
* A(k,k) := D(k,k) = W(k,kw)
|
|
* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
|
|
*
|
|
* (NOTE: No need to use for Hermitian matrix
|
|
* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
|
|
* element D(k,k) from W (potentially saves only one load))
|
|
CALL CCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
|
|
IF( K.GT.1 ) THEN
|
|
*
|
|
* (NOTE: No need to check if A(k,k) is NOT ZERO,
|
|
* since that was ensured earlier in pivot search:
|
|
* case A(k,k) = 0 falls into 2x2 pivot case(4))
|
|
*
|
|
R1 = ONE / REAL( A( K, K ) )
|
|
CALL CSSCAL( K-1, R1, A( 1, K ), 1 )
|
|
*
|
|
* (2) Conjugate column W(kw)
|
|
*
|
|
CALL CLACGV( K-1, W( 1, KW ), 1 )
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
|
|
*
|
|
* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
|
|
*
|
|
* where U(k) and U(k-1) are the k-th and (k-1)-th columns
|
|
* of U
|
|
*
|
|
* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
|
|
* block D(k-1:k,k-1:k) in columns k-1 and k of A.
|
|
* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
|
|
* block and not stored)
|
|
* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
|
|
* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
|
|
* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
|
|
*
|
|
IF( K.GT.2 ) THEN
|
|
*
|
|
* Factor out the columns of the inverse of 2-by-2 pivot
|
|
* block D, so that each column contains 1, to reduce the
|
|
* number of FLOPS when we multiply panel
|
|
* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
|
|
*
|
|
* D**(-1) = ( d11 cj(d21) )**(-1) =
|
|
* ( d21 d22 )
|
|
*
|
|
* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
|
|
* ( (-d21) ( d11 ) )
|
|
*
|
|
* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
|
|
*
|
|
* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
|
|
* ( ( -1 ) ( d11/conj(d21) ) )
|
|
*
|
|
* = 1/(|d21|**2) * 1/(D22*D11-1) *
|
|
*
|
|
* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
|
* ( ( -1 ) ( D22 ) )
|
|
*
|
|
* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
|
* ( ( -1 ) ( D22 ) )
|
|
*
|
|
* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
|
|
* ( ( -1 ) ( D22 ) )
|
|
*
|
|
* = ( conj(D21)*( D11 ) D21*( -1 ) )
|
|
* ( ( -1 ) ( D22 ) ),
|
|
*
|
|
* where D11 = d22/d21,
|
|
* D22 = d11/conj(d21),
|
|
* D21 = T/d21,
|
|
* T = 1/(D22*D11-1).
|
|
*
|
|
* (NOTE: No need to check for division by ZERO,
|
|
* since that was ensured earlier in pivot search:
|
|
* (a) d21 != 0, since in 2x2 pivot case(4)
|
|
* |d21| should be larger than |d11| and |d22|;
|
|
* (b) (D22*D11 - 1) != 0, since from (a),
|
|
* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
|
|
*
|
|
D21 = W( K-1, KW )
|
|
D11 = W( K, KW ) / CONJG( D21 )
|
|
D22 = W( K-1, KW-1 ) / D21
|
|
T = ONE / ( REAL( D11*D22 )-ONE )
|
|
D21 = T / D21
|
|
*
|
|
* Update elements in columns A(k-1) and A(k) as
|
|
* dot products of rows of ( W(kw-1) W(kw) ) and columns
|
|
* of D**(-1)
|
|
*
|
|
DO 20 J = 1, K - 2
|
|
A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
|
|
A( J, K ) = CONJG( D21 )*
|
|
$ ( D22*W( J, KW )-W( J, KW-1 ) )
|
|
20 CONTINUE
|
|
END IF
|
|
*
|
|
* Copy D(k) to A
|
|
*
|
|
A( K-1, K-1 ) = W( K-1, KW-1 )
|
|
A( K-1, K ) = W( K-1, KW )
|
|
A( K, K ) = W( K, KW )
|
|
*
|
|
* (2) Conjugate columns W(kw) and W(kw-1)
|
|
*
|
|
CALL CLACGV( K-1, W( 1, KW ), 1 )
|
|
CALL CLACGV( K-2, W( 1, KW-1 ), 1 )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
* Store details of the interchanges in IPIV
|
|
*
|
|
IF( KSTEP.EQ.1 ) THEN
|
|
IPIV( K ) = KP
|
|
ELSE
|
|
IPIV( K ) = -KP
|
|
IPIV( K-1 ) = -KP
|
|
END IF
|
|
*
|
|
* Decrease K and return to the start of the main loop
|
|
*
|
|
K = K - KSTEP
|
|
GO TO 10
|
|
*
|
|
30 CONTINUE
|
|
*
|
|
* Update the upper triangle of A11 (= A(1:k,1:k)) as
|
|
*
|
|
* A11 := A11 - U12*D*U12**H = A11 - U12*W**H
|
|
*
|
|
* computing blocks of NB columns at a time (note that conjg(W) is
|
|
* actually stored)
|
|
*
|
|
DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
|
|
JB = MIN( NB, K-J+1 )
|
|
*
|
|
* Update the upper triangle of the diagonal block
|
|
*
|
|
DO 40 JJ = J, J + JB - 1
|
|
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
|
|
CALL CGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
|
|
$ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
|
|
$ A( J, JJ ), 1 )
|
|
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
|
|
40 CONTINUE
|
|
*
|
|
* Update the rectangular superdiagonal block
|
|
*
|
|
CALL CGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
|
|
$ -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
|
|
$ CONE, A( 1, J ), LDA )
|
|
50 CONTINUE
|
|
*
|
|
* Put U12 in standard form by partially undoing the interchanges
|
|
* in of rows in columns k+1:n looping backwards from k+1 to n
|
|
*
|
|
J = K + 1
|
|
60 CONTINUE
|
|
*
|
|
* Undo the interchanges (if any) of rows J and JP
|
|
* at each step J
|
|
*
|
|
* (Here, J is a diagonal index)
|
|
JJ = J
|
|
JP = IPIV( J )
|
|
IF( JP.LT.0 ) THEN
|
|
JP = -JP
|
|
* (Here, J is a diagonal index)
|
|
J = J + 1
|
|
END IF
|
|
* (NOTE: Here, J is used to determine row length. Length N-J+1
|
|
* of the rows to swap back doesn't include diagonal element)
|
|
J = J + 1
|
|
IF( JP.NE.JJ .AND. J.LE.N )
|
|
$ CALL CSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
|
|
IF( J.LE.N )
|
|
$ GO TO 60
|
|
*
|
|
* Set KB to the number of columns factorized
|
|
*
|
|
KB = N - K
|
|
*
|
|
ELSE
|
|
*
|
|
* Factorize the leading columns of A using the lower triangle
|
|
* of A and working forwards, and compute the matrix W = L21*D
|
|
* for use in updating A22 (note that conjg(W) is actually stored)
|
|
*
|
|
* K is the main loop index, increasing from 1 in steps of 1 or 2
|
|
*
|
|
K = 1
|
|
70 CONTINUE
|
|
*
|
|
* Exit from loop
|
|
*
|
|
IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
|
|
$ GO TO 90
|
|
*
|
|
KSTEP = 1
|
|
*
|
|
* Copy column K of A to column K of W and update it
|
|
*
|
|
W( K, K ) = REAL( A( K, K ) )
|
|
IF( K.LT.N )
|
|
$ CALL CCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
|
|
CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
|
|
$ W( K, 1 ), LDW, CONE, W( K, K ), 1 )
|
|
W( K, K ) = REAL( W( K, K ) )
|
|
*
|
|
* Determine rows and columns to be interchanged and whether
|
|
* a 1-by-1 or 2-by-2 pivot block will be used
|
|
*
|
|
ABSAKK = ABS( REAL( W( K, K ) ) )
|
|
*
|
|
* IMAX is the row-index of the largest off-diagonal element in
|
|
* column K, and COLMAX is its absolute value.
|
|
* Determine both COLMAX and IMAX.
|
|
*
|
|
IF( K.LT.N ) THEN
|
|
IMAX = K + ICAMAX( N-K, W( K+1, K ), 1 )
|
|
COLMAX = CABS1( W( IMAX, K ) )
|
|
ELSE
|
|
COLMAX = ZERO
|
|
END IF
|
|
*
|
|
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
|
|
*
|
|
* Column K is zero or underflow: set INFO and continue
|
|
*
|
|
IF( INFO.EQ.0 )
|
|
$ INFO = K
|
|
KP = K
|
|
A( K, K ) = REAL( A( K, K ) )
|
|
ELSE
|
|
*
|
|
* ============================================================
|
|
*
|
|
* BEGIN pivot search
|
|
*
|
|
* Case(1)
|
|
IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
|
|
*
|
|
* no interchange, use 1-by-1 pivot block
|
|
*
|
|
KP = K
|
|
ELSE
|
|
*
|
|
* BEGIN pivot search along IMAX row
|
|
*
|
|
*
|
|
* Copy column IMAX to column K+1 of W and update it
|
|
*
|
|
CALL CCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
|
|
CALL CLACGV( IMAX-K, W( K, K+1 ), 1 )
|
|
W( IMAX, K+1 ) = REAL( A( IMAX, IMAX ) )
|
|
IF( IMAX.LT.N )
|
|
$ CALL CCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
|
|
$ W( IMAX+1, K+1 ), 1 )
|
|
CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
|
|
$ LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
|
|
$ 1 )
|
|
W( IMAX, K+1 ) = REAL( W( IMAX, K+1 ) )
|
|
*
|
|
* JMAX is the column-index of the largest off-diagonal
|
|
* element in row IMAX, and ROWMAX is its absolute value.
|
|
* Determine only ROWMAX.
|
|
*
|
|
JMAX = K - 1 + ICAMAX( IMAX-K, W( K, K+1 ), 1 )
|
|
ROWMAX = CABS1( W( JMAX, K+1 ) )
|
|
IF( IMAX.LT.N ) THEN
|
|
JMAX = IMAX + ICAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
|
|
ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
|
|
END IF
|
|
*
|
|
* Case(2)
|
|
IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
|
|
*
|
|
* no interchange, use 1-by-1 pivot block
|
|
*
|
|
KP = K
|
|
*
|
|
* Case(3)
|
|
ELSE IF( ABS( REAL( W( IMAX, K+1 ) ) ).GE.ALPHA*ROWMAX )
|
|
$ THEN
|
|
*
|
|
* interchange rows and columns K and IMAX, use 1-by-1
|
|
* pivot block
|
|
*
|
|
KP = IMAX
|
|
*
|
|
* copy column K+1 of W to column K of W
|
|
*
|
|
CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
|
|
*
|
|
* Case(4)
|
|
ELSE
|
|
*
|
|
* interchange rows and columns K+1 and IMAX, use 2-by-2
|
|
* pivot block
|
|
*
|
|
KP = IMAX
|
|
KSTEP = 2
|
|
END IF
|
|
*
|
|
*
|
|
* END pivot search along IMAX row
|
|
*
|
|
END IF
|
|
*
|
|
* END pivot search
|
|
*
|
|
* ============================================================
|
|
*
|
|
* KK is the column of A where pivoting step stopped
|
|
*
|
|
KK = K + KSTEP - 1
|
|
*
|
|
* Interchange rows and columns KP and KK.
|
|
* Updated column KP is already stored in column KK of W.
|
|
*
|
|
IF( KP.NE.KK ) THEN
|
|
*
|
|
* Copy non-updated column KK to column KP of submatrix A
|
|
* at step K. No need to copy element into column K
|
|
* (or K and K+1 for 2-by-2 pivot) of A, since these columns
|
|
* will be later overwritten.
|
|
*
|
|
A( KP, KP ) = REAL( A( KK, KK ) )
|
|
CALL CCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
|
|
$ LDA )
|
|
CALL CLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
|
|
IF( KP.LT.N )
|
|
$ CALL CCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
|
|
*
|
|
* Interchange rows KK and KP in first K-1 columns of A
|
|
* (columns K (or K and K+1 for 2-by-2 pivot) of A will be
|
|
* later overwritten). Interchange rows KK and KP
|
|
* in first KK columns of W.
|
|
*
|
|
IF( K.GT.1 )
|
|
$ CALL CSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
|
|
CALL CSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
|
|
END IF
|
|
*
|
|
IF( KSTEP.EQ.1 ) THEN
|
|
*
|
|
* 1-by-1 pivot block D(k): column k of W now holds
|
|
*
|
|
* W(k) = L(k)*D(k),
|
|
*
|
|
* where L(k) is the k-th column of L
|
|
*
|
|
* (1) Store subdiag. elements of column L(k)
|
|
* and 1-by-1 block D(k) in column k of A.
|
|
* (NOTE: Diagonal element L(k,k) is a UNIT element
|
|
* and not stored)
|
|
* A(k,k) := D(k,k) = W(k,k)
|
|
* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
|
|
*
|
|
* (NOTE: No need to use for Hermitian matrix
|
|
* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
|
|
* element D(k,k) from W (potentially saves only one load))
|
|
CALL CCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
|
|
IF( K.LT.N ) THEN
|
|
*
|
|
* (NOTE: No need to check if A(k,k) is NOT ZERO,
|
|
* since that was ensured earlier in pivot search:
|
|
* case A(k,k) = 0 falls into 2x2 pivot case(4))
|
|
*
|
|
R1 = ONE / REAL( A( K, K ) )
|
|
CALL CSSCAL( N-K, R1, A( K+1, K ), 1 )
|
|
*
|
|
* (2) Conjugate column W(k)
|
|
*
|
|
CALL CLACGV( N-K, W( K+1, K ), 1 )
|
|
END IF
|
|
*
|
|
ELSE
|
|
*
|
|
* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
|
|
*
|
|
* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
|
|
*
|
|
* where L(k) and L(k+1) are the k-th and (k+1)-th columns
|
|
* of L
|
|
*
|
|
* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
|
|
* block D(k:k+1,k:k+1) in columns k and k+1 of A.
|
|
* (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
|
|
* block and not stored)
|
|
* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
|
|
* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
|
|
* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
|
|
*
|
|
IF( K.LT.N-1 ) THEN
|
|
*
|
|
* Factor out the columns of the inverse of 2-by-2 pivot
|
|
* block D, so that each column contains 1, to reduce the
|
|
* number of FLOPS when we multiply panel
|
|
* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
|
|
*
|
|
* D**(-1) = ( d11 cj(d21) )**(-1) =
|
|
* ( d21 d22 )
|
|
*
|
|
* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
|
|
* ( (-d21) ( d11 ) )
|
|
*
|
|
* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
|
|
*
|
|
* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
|
|
* ( ( -1 ) ( d11/conj(d21) ) )
|
|
*
|
|
* = 1/(|d21|**2) * 1/(D22*D11-1) *
|
|
*
|
|
* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
|
* ( ( -1 ) ( D22 ) )
|
|
*
|
|
* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
|
|
* ( ( -1 ) ( D22 ) )
|
|
*
|
|
* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
|
|
* ( ( -1 ) ( D22 ) )
|
|
*
|
|
* = ( conj(D21)*( D11 ) D21*( -1 ) )
|
|
* ( ( -1 ) ( D22 ) )
|
|
*
|
|
* where D11 = d22/d21,
|
|
* D22 = d11/conj(d21),
|
|
* D21 = T/d21,
|
|
* T = 1/(D22*D11-1).
|
|
*
|
|
* (NOTE: No need to check for division by ZERO,
|
|
* since that was ensured earlier in pivot search:
|
|
* (a) d21 != 0, since in 2x2 pivot case(4)
|
|
* |d21| should be larger than |d11| and |d22|;
|
|
* (b) (D22*D11 - 1) != 0, since from (a),
|
|
* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
|
|
*
|
|
D21 = W( K+1, K )
|
|
D11 = W( K+1, K+1 ) / D21
|
|
D22 = W( K, K ) / CONJG( D21 )
|
|
T = ONE / ( REAL( D11*D22 )-ONE )
|
|
D21 = T / D21
|
|
*
|
|
* Update elements in columns A(k) and A(k+1) as
|
|
* dot products of rows of ( W(k) W(k+1) ) and columns
|
|
* of D**(-1)
|
|
*
|
|
DO 80 J = K + 2, N
|
|
A( J, K ) = CONJG( D21 )*
|
|
$ ( D11*W( J, K )-W( J, K+1 ) )
|
|
A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
|
|
80 CONTINUE
|
|
END IF
|
|
*
|
|
* Copy D(k) to A
|
|
*
|
|
A( K, K ) = W( K, K )
|
|
A( K+1, K ) = W( K+1, K )
|
|
A( K+1, K+1 ) = W( K+1, K+1 )
|
|
*
|
|
* (2) Conjugate columns W(k) and W(k+1)
|
|
*
|
|
CALL CLACGV( N-K, W( K+1, K ), 1 )
|
|
CALL CLACGV( N-K-1, W( K+2, K+1 ), 1 )
|
|
*
|
|
END IF
|
|
*
|
|
END IF
|
|
*
|
|
* Store details of the interchanges in IPIV
|
|
*
|
|
IF( KSTEP.EQ.1 ) THEN
|
|
IPIV( K ) = KP
|
|
ELSE
|
|
IPIV( K ) = -KP
|
|
IPIV( K+1 ) = -KP
|
|
END IF
|
|
*
|
|
* Increase K and return to the start of the main loop
|
|
*
|
|
K = K + KSTEP
|
|
GO TO 70
|
|
*
|
|
90 CONTINUE
|
|
*
|
|
* Update the lower triangle of A22 (= A(k:n,k:n)) as
|
|
*
|
|
* A22 := A22 - L21*D*L21**H = A22 - L21*W**H
|
|
*
|
|
* computing blocks of NB columns at a time (note that conjg(W) is
|
|
* actually stored)
|
|
*
|
|
DO 110 J = K, N, NB
|
|
JB = MIN( NB, N-J+1 )
|
|
*
|
|
* Update the lower triangle of the diagonal block
|
|
*
|
|
DO 100 JJ = J, J + JB - 1
|
|
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
|
|
CALL CGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
|
|
$ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
|
|
$ A( JJ, JJ ), 1 )
|
|
A( JJ, JJ ) = REAL( A( JJ, JJ ) )
|
|
100 CONTINUE
|
|
*
|
|
* Update the rectangular subdiagonal block
|
|
*
|
|
IF( J+JB.LE.N )
|
|
$ CALL CGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
|
|
$ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
|
|
$ LDW, CONE, A( J+JB, J ), LDA )
|
|
110 CONTINUE
|
|
*
|
|
* Put L21 in standard form by partially undoing the interchanges
|
|
* of rows in columns 1:k-1 looping backwards from k-1 to 1
|
|
*
|
|
J = K - 1
|
|
120 CONTINUE
|
|
*
|
|
* Undo the interchanges (if any) of rows J and JP
|
|
* at each step J
|
|
*
|
|
* (Here, J is a diagonal index)
|
|
JJ = J
|
|
JP = IPIV( J )
|
|
IF( JP.LT.0 ) THEN
|
|
JP = -JP
|
|
* (Here, J is a diagonal index)
|
|
J = J - 1
|
|
END IF
|
|
* (NOTE: Here, J is used to determine row length. Length J
|
|
* of the rows to swap back doesn't include diagonal element)
|
|
J = J - 1
|
|
IF( JP.NE.JJ .AND. J.GE.1 )
|
|
$ CALL CSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
|
|
IF( J.GE.1 )
|
|
$ GO TO 120
|
|
*
|
|
* Set KB to the number of columns factorized
|
|
*
|
|
KB = K - 1
|
|
*
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of CLAHEF
|
|
*
|
|
END
|
|
|