Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

686 lines
22 KiB

*> \brief \b CLAQZ0
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAQZ0 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/CLAQZ0.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/CLAQZ0.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/CLAQZ0.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B,
* $ LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC,
* $ INFO )
* IMPLICIT NONE
*
* Arguments
* CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
* INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
* $ REC
* INTEGER, INTENT( OUT ) :: INFO
* COMPLEX, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
* $ Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
* REAL, INTENT( OUT ) :: RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAQZ0 computes the eigenvalues of a matrix pair (H,T),
*> where H is an upper Hessenberg matrix and T is upper triangular,
*> using the double-shift QZ method.
*> Matrix pairs of this type are produced by the reduction to
*> generalized upper Hessenberg form of a matrix pair (A,B):
*>
*> A = Q1*H*Z1**H, B = Q1*T*Z1**H,
*>
*> as computed by CGGHRD.
*>
*> If JOB='S', then the Hessenberg-triangular pair (H,T) is
*> also reduced to generalized Schur form,
*>
*> H = Q*S*Z**H, T = Q*P*Z**H,
*>
*> where Q and Z are unitary matrices, P and S are an upper triangular
*> matrices.
*>
*> Optionally, the unitary matrix Q from the generalized Schur
*> factorization may be postmultiplied into an input matrix Q1, and the
*> unitary matrix Z may be postmultiplied into an input matrix Z1.
*> If Q1 and Z1 are the unitary matrices from CGGHRD that reduced
*> the matrix pair (A,B) to generalized upper Hessenberg form, then the
*> output matrices Q1*Q and Z1*Z are the unitary factors from the
*> generalized Schur factorization of (A,B):
*>
*> A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H.
*>
*> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
*> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
*> complex and beta real.
*> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
*> generalized nonsymmetric eigenvalue problem (GNEP)
*> A*x = lambda*B*x
*> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
*> alternate form of the GNEP
*> mu*A*y = B*y.
*> Eigenvalues can be read directly from the generalized Schur
*> form:
*> alpha = S(i,i), beta = P(i,i).
*>
*> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
*> Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
*> pp. 241--256.
*>
*> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
*> Algorithm with Aggressive Early Deflation", SIAM J. Numer.
*> Anal., 29(2006), pp. 199--227.
*>
*> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
*> multipole rational QZ method with aggressive early deflation"
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] WANTS
*> \verbatim
*> WANTS is CHARACTER*1
*> = 'E': Compute eigenvalues only;
*> = 'S': Compute eigenvalues and the Schur form.
*> \endverbatim
*>
*> \param[in] WANTQ
*> \verbatim
*> WANTQ is CHARACTER*1
*> = 'N': Left Schur vectors (Q) are not computed;
*> = 'I': Q is initialized to the unit matrix and the matrix Q
*> of left Schur vectors of (A,B) is returned;
*> = 'V': Q must contain an unitary matrix Q1 on entry and
*> the product Q1*Q is returned.
*> \endverbatim
*>
*> \param[in] WANTZ
*> \verbatim
*> WANTZ is CHARACTER*1
*> = 'N': Right Schur vectors (Z) are not computed;
*> = 'I': Z is initialized to the unit matrix and the matrix Z
*> of right Schur vectors of (A,B) is returned;
*> = 'V': Z must contain an unitary matrix Z1 on entry and
*> the product Z1*Z is returned.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, Q, and Z. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*> ILO and IHI mark the rows and columns of A which are in
*> Hessenberg form. It is assumed that A is already upper
*> triangular in rows and columns 1:ILO-1 and IHI+1:N.
*> If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> On entry, the N-by-N upper Hessenberg matrix A.
*> On exit, if JOB = 'S', A contains the upper triangular
*> matrix S from the generalized Schur factorization.
*> If JOB = 'E', the diagonal of A matches that of S, but
*> the rest of A is unspecified.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB, N)
*> On entry, the N-by-N upper triangular matrix B.
*> On exit, if JOB = 'S', B contains the upper triangular
*> matrix P from the generalized Schur factorization.
*> If JOB = 'E', the diagonal of B matches that of P, but
*> the rest of B is unspecified.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX array, dimension (N)
*> Each scalar alpha defining an eigenvalue
*> of GNEP.
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX array, dimension (N)
*> The scalars beta that define the eigenvalues of GNEP.
*> Together, the quantities alpha = ALPHA(j) and
*> beta = BETA(j) represent the j-th eigenvalue of the matrix
*> pair (A,B), in one of the forms lambda = alpha/beta or
*> mu = beta/alpha. Since either lambda or mu may overflow,
*> they should not, in general, be computed.
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDQ, N)
*> On entry, if COMPQ = 'V', the unitary matrix Q1 used in
*> the reduction of (A,B) to generalized Hessenberg form.
*> On exit, if COMPQ = 'I', the unitary matrix of left Schur
*> vectors of (A,B), and if COMPQ = 'V', the unitary matrix
*> of left Schur vectors of (A,B).
*> Not referenced if COMPQ = 'N'.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= 1.
*> If COMPQ='V' or 'I', then LDQ >= N.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (LDZ, N)
*> On entry, if COMPZ = 'V', the unitary matrix Z1 used in
*> the reduction of (A,B) to generalized Hessenberg form.
*> On exit, if COMPZ = 'I', the unitary matrix of
*> right Schur vectors of (H,T), and if COMPZ = 'V', the
*> unitary matrix of right Schur vectors of (A,B).
*> Not referenced if COMPZ = 'N'.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= 1.
*> If COMPZ='V' or 'I', then LDZ >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[in] REC
*> \verbatim
*> REC is INTEGER
*> REC indicates the current recursion level. Should be set
*> to 0 on first call.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> = 1,...,N: the QZ iteration did not converge. (A,B) is not
*> in Schur form, but ALPHA(i) and
*> BETA(i), i=INFO+1,...,N should be correct.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Thijs Steel, KU Leuven
*
*> \date May 2020
*
*> \ingroup complexGEcomputational
*>
* =====================================================================
RECURSIVE SUBROUTINE CLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A,
$ LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z,
$ LDZ, WORK, LWORK, RWORK, REC,
$ INFO )
IMPLICIT NONE
* Arguments
CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
$ REC
INTEGER, INTENT( OUT ) :: INFO
COMPLEX, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
$ Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
REAL, INTENT( OUT ) :: RWORK( * )
* Parameters
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0, 0.0 ), CONE = ( 1.0, 0.0 ) )
REAL :: ZERO, ONE, HALF
PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
* Local scalars
REAL :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR, BNORM, BTOL
COMPLEX :: ESHIFT, S1, TEMP
INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
$ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
$ NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
$ ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO,
$ NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST
LOGICAL :: ILSCHUR, ILQ, ILZ
CHARACTER :: JBCMPZ*3
* External Functions
EXTERNAL :: XERBLA, CHGEQZ, CLAQZ2, CLAQZ3, CLASET,
$ CLARTG, CROT
REAL, EXTERNAL :: SLAMCH, CLANHS
LOGICAL, EXTERNAL :: LSAME
INTEGER, EXTERNAL :: ILAENV
*
* Decode wantS,wantQ,wantZ
*
IF( LSAME( WANTS, 'E' ) ) THEN
ILSCHUR = .FALSE.
IWANTS = 1
ELSE IF( LSAME( WANTS, 'S' ) ) THEN
ILSCHUR = .TRUE.
IWANTS = 2
ELSE
IWANTS = 0
END IF
IF( LSAME( WANTQ, 'N' ) ) THEN
ILQ = .FALSE.
IWANTQ = 1
ELSE IF( LSAME( WANTQ, 'V' ) ) THEN
ILQ = .TRUE.
IWANTQ = 2
ELSE IF( LSAME( WANTQ, 'I' ) ) THEN
ILQ = .TRUE.
IWANTQ = 3
ELSE
IWANTQ = 0
END IF
IF( LSAME( WANTZ, 'N' ) ) THEN
ILZ = .FALSE.
IWANTZ = 1
ELSE IF( LSAME( WANTZ, 'V' ) ) THEN
ILZ = .TRUE.
IWANTZ = 2
ELSE IF( LSAME( WANTZ, 'I' ) ) THEN
ILZ = .TRUE.
IWANTZ = 3
ELSE
IWANTZ = 0
END IF
*
* Check Argument Values
*
INFO = 0
IF( IWANTS.EQ.0 ) THEN
INFO = -1
ELSE IF( IWANTQ.EQ.0 ) THEN
INFO = -2
ELSE IF( IWANTZ.EQ.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( ILO.LT.1 ) THEN
INFO = -5
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
INFO = -6
ELSE IF( LDA.LT.N ) THEN
INFO = -8
ELSE IF( LDB.LT.N ) THEN
INFO = -10
ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
INFO = -15
ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
INFO = -17
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAQZ0', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
WORK( 1 ) = REAL( 1 )
RETURN
END IF
*
* Get the parameters
*
JBCMPZ( 1:1 ) = WANTS
JBCMPZ( 2:2 ) = WANTQ
JBCMPZ( 3:3 ) = WANTZ
NMIN = ILAENV( 12, 'CLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
NWR = ILAENV( 13, 'CLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
NWR = MAX( 2, NWR )
NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
NIBBLE = ILAENV( 14, 'CLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
NSR = ILAENV( 15, 'CLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
RCOST = ILAENV( 17, 'CLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( REAL( RCOST )/100*N ) ) )
ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4
NBR = NSR+ITEMP1
IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN
CALL CHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
$ INFO )
RETURN
END IF
*
* Find out required workspace
*
* Workspace query to CLAQZ2
NW = MAX( NWR, NMIN )
CALL CLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, LDB,
$ Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHA,
$ BETA, WORK, NW, WORK, NW, WORK, -1, RWORK, REC,
$ AED_INFO )
ITEMP1 = INT( WORK( 1 ) )
* Workspace query to CLAQZ3
CALL CLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHA,
$ BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, NBR,
$ WORK, NBR, WORK, -1, SWEEP_INFO )
ITEMP2 = INT( WORK( 1 ) )
LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 )
IF ( LWORK .EQ.-1 ) THEN
WORK( 1 ) = REAL( LWORKREQ )
RETURN
ELSE IF ( LWORK .LT. LWORKREQ ) THEN
INFO = -19
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAQZ0', INFO )
RETURN
END IF
*
* Initialize Q and Z
*
IF( IWANTQ.EQ.3 ) CALL CLASET( 'FULL', N, N, CZERO, CONE, Q,
$ LDQ )
IF( IWANTZ.EQ.3 ) CALL CLASET( 'FULL', N, N, CZERO, CONE, Z,
$ LDZ )
* Get machine constants
SAFMIN = SLAMCH( 'SAFE MINIMUM' )
SAFMAX = ONE/SAFMIN
ULP = SLAMCH( 'PRECISION' )
SMLNUM = SAFMIN*( REAL( N )/ULP )
BNORM = CLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, RWORK )
BTOL = MAX( SAFMIN, ULP*BNORM )
ISTART = ILO
ISTOP = IHI
MAXIT = 30*( IHI-ILO+1 )
LD = 0
DO IITER = 1, MAXIT
IF( IITER .GE. MAXIT ) THEN
INFO = ISTOP+1
GOTO 80
END IF
IF ( ISTART+1 .GE. ISTOP ) THEN
ISTOP = ISTART
EXIT
END IF
* Check deflations at the end
IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM,
$ ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1,
$ ISTOP-1 ) ) ) ) ) THEN
A( ISTOP, ISTOP-1 ) = CZERO
ISTOP = ISTOP-1
LD = 0
ESHIFT = CZERO
END IF
* Check deflations at the start
IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM,
$ ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1,
$ ISTART+1 ) ) ) ) ) THEN
A( ISTART+1, ISTART ) = CZERO
ISTART = ISTART+1
LD = 0
ESHIFT = CZERO
END IF
IF ( ISTART+1 .GE. ISTOP ) THEN
EXIT
END IF
* Check interior deflations
ISTART2 = ISTART
DO K = ISTOP, ISTART+1, -1
IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K,
$ K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN
A( K, K-1 ) = CZERO
ISTART2 = K
EXIT
END IF
END DO
* Get range to apply rotations to
IF ( ILSCHUR ) THEN
ISTARTM = 1
ISTOPM = N
ELSE
ISTARTM = ISTART2
ISTOPM = ISTOP
END IF
* Check infinite eigenvalues, this is done without blocking so might
* slow down the method when many infinite eigenvalues are present
K = ISTOP
DO WHILE ( K.GE.ISTART2 )
IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
* A diagonal element of B is negligible, move it
* to the top and deflate it
DO K2 = K, ISTART2+1, -1
CALL CLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1, S1,
$ TEMP )
B( K2-1, K2 ) = TEMP
B( K2-1, K2-1 ) = CZERO
CALL CROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1,
$ B( ISTARTM, K2-1 ), 1, C1, S1 )
CALL CROT( MIN( K2+1, ISTOP )-ISTARTM+1, A( ISTARTM,
$ K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 )
IF ( ILZ ) THEN
CALL CROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1, C1,
$ S1 )
END IF
IF( K2.LT.ISTOP ) THEN
CALL CLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1,
$ S1, TEMP )
A( K2, K2-1 ) = TEMP
A( K2+1, K2-1 ) = CZERO
CALL CROT( ISTOPM-K2+1, A( K2, K2 ), LDA, A( K2+1,
$ K2 ), LDA, C1, S1 )
CALL CROT( ISTOPM-K2+1, B( K2, K2 ), LDB, B( K2+1,
$ K2 ), LDB, C1, S1 )
IF( ILQ ) THEN
CALL CROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1,
$ C1, CONJG( S1 ) )
END IF
END IF
END DO
IF( ISTART2.LT.ISTOP )THEN
CALL CLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1,
$ ISTART2 ), C1, S1, TEMP )
A( ISTART2, ISTART2 ) = TEMP
A( ISTART2+1, ISTART2 ) = CZERO
CALL CROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2,
$ ISTART2+1 ), LDA, A( ISTART2+1,
$ ISTART2+1 ), LDA, C1, S1 )
CALL CROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2,
$ ISTART2+1 ), LDB, B( ISTART2+1,
$ ISTART2+1 ), LDB, C1, S1 )
IF( ILQ ) THEN
CALL CROT( N, Q( 1, ISTART2 ), 1, Q( 1,
$ ISTART2+1 ), 1, C1, CONJG( S1 ) )
END IF
END IF
ISTART2 = ISTART2+1
END IF
K = K-1
END DO
* istart2 now points to the top of the bottom right
* unreduced Hessenberg block
IF ( ISTART2 .GE. ISTOP ) THEN
ISTOP = ISTART2-1
LD = 0
ESHIFT = CZERO
CYCLE
END IF
NW = NWR
NSHIFTS = NSR
NBLOCK = NBR
IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN
* Setting nw to the size of the subblock will make AED deflate
* all the eigenvalues. This is slightly more efficient than just
* using CHGEQZ because the off diagonal part gets updated via BLAS.
IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN
NW = ISTOP-ISTART+1
ISTART2 = ISTART
ELSE
NW = ISTOP-ISTART2+1
END IF
END IF
*
* Time for AED
*
CALL CLAQZ2( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A, LDA,
$ B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED,
$ ALPHA, BETA, WORK, NW, WORK( NW**2+1 ), NW,
$ WORK( 2*NW**2+1 ), LWORK-2*NW**2, RWORK, REC,
$ AED_INFO )
IF ( N_DEFLATED > 0 ) THEN
ISTOP = ISTOP-N_DEFLATED
LD = 0
ESHIFT = CZERO
END IF
IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR.
$ ISTOP-ISTART2+1 .LT. NMIN ) THEN
* AED has uncovered many eigenvalues. Skip a QZ sweep and run
* AED again.
CYCLE
END IF
LD = LD+1
NS = MIN( NSHIFTS, ISTOP-ISTART2 )
NS = MIN( NS, N_UNDEFLATED )
SHIFTPOS = ISTOP-N_UNDEFLATED+1
IF ( MOD( LD, 6 ) .EQ. 0 ) THEN
*
* Exceptional shift. Chosen for no particularly good reason.
*
IF( ( REAL( MAXIT )*SAFMIN )*ABS( A( ISTOP,
$ ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN
ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 )
ELSE
ESHIFT = ESHIFT+CONE/( SAFMIN*REAL( MAXIT ) )
END IF
ALPHA( SHIFTPOS ) = CONE
BETA( SHIFTPOS ) = ESHIFT
NS = 1
END IF
*
* Time for a QZ sweep
*
CALL CLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS, NBLOCK,
$ ALPHA( SHIFTPOS ), BETA( SHIFTPOS ), A, LDA, B,
$ LDB, Q, LDQ, Z, LDZ, WORK, NBLOCK, WORK( NBLOCK**
$ 2+1 ), NBLOCK, WORK( 2*NBLOCK**2+1 ),
$ LWORK-2*NBLOCK**2, SWEEP_INFO )
END DO
*
* Call CHGEQZ to normalize the eigenvalue blocks and set the eigenvalues
* If all the eigenvalues have been found, CHGEQZ will not do any iterations
* and only normalize the blocks. In case of a rare convergence failure,
* the single shift might perform better.
*
80 CALL CHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
$ NORM_INFO )
INFO = NORM_INFO
END SUBROUTINE