You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
290 lines
7.9 KiB
290 lines
7.9 KiB
!> \brief \b CLARTG generates a plane rotation with real cosine and complex sine.
|
|
!
|
|
! =========== DOCUMENTATION ===========
|
|
!
|
|
! Online html documentation available at
|
|
! http://www.netlib.org/lapack/explore-html/
|
|
!
|
|
! Definition:
|
|
! ===========
|
|
!
|
|
! SUBROUTINE CLARTG( F, G, C, S, R )
|
|
!
|
|
! .. Scalar Arguments ..
|
|
! REAL(wp) C
|
|
! COMPLEX(wp) F, G, R, S
|
|
! ..
|
|
!
|
|
!> \par Purpose:
|
|
! =============
|
|
!>
|
|
!> \verbatim
|
|
!>
|
|
!> CLARTG generates a plane rotation so that
|
|
!>
|
|
!> [ C S ] . [ F ] = [ R ]
|
|
!> [ -conjg(S) C ] [ G ] [ 0 ]
|
|
!>
|
|
!> where C is real and C**2 + |S|**2 = 1.
|
|
!>
|
|
!> The mathematical formulas used for C and S are
|
|
!>
|
|
!> sgn(x) = { x / |x|, x != 0
|
|
!> { 1, x = 0
|
|
!>
|
|
!> R = sgn(F) * sqrt(|F|**2 + |G|**2)
|
|
!>
|
|
!> C = |F| / sqrt(|F|**2 + |G|**2)
|
|
!>
|
|
!> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
|
|
!>
|
|
!> Special conditions:
|
|
!> If G=0, then C=1 and S=0.
|
|
!> If F=0, then C=0 and S is chosen so that R is real.
|
|
!>
|
|
!> When F and G are real, the formulas simplify to C = F/R and
|
|
!> S = G/R, and the returned values of C, S, and R should be
|
|
!> identical to those returned by SLARTG.
|
|
!>
|
|
!> The algorithm used to compute these quantities incorporates scaling
|
|
!> to avoid overflow or underflow in computing the square root of the
|
|
!> sum of squares.
|
|
!>
|
|
!> This is the same routine CROTG fom BLAS1, except that
|
|
!> F and G are unchanged on return.
|
|
!>
|
|
!> Below, wp=>sp stands for single precision from LA_CONSTANTS module.
|
|
!> \endverbatim
|
|
!
|
|
! Arguments:
|
|
! ==========
|
|
!
|
|
!> \param[in] F
|
|
!> \verbatim
|
|
!> F is COMPLEX(wp)
|
|
!> The first component of vector to be rotated.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[in] G
|
|
!> \verbatim
|
|
!> G is COMPLEX(wp)
|
|
!> The second component of vector to be rotated.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[out] C
|
|
!> \verbatim
|
|
!> C is REAL(wp)
|
|
!> The cosine of the rotation.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[out] S
|
|
!> \verbatim
|
|
!> S is COMPLEX(wp)
|
|
!> The sine of the rotation.
|
|
!> \endverbatim
|
|
!>
|
|
!> \param[out] R
|
|
!> \verbatim
|
|
!> R is COMPLEX(wp)
|
|
!> The nonzero component of the rotated vector.
|
|
!> \endverbatim
|
|
!
|
|
! Authors:
|
|
! ========
|
|
!
|
|
!> \author Weslley Pereira, University of Colorado Denver, USA
|
|
!
|
|
!> \date December 2021
|
|
!
|
|
!> \ingroup OTHERauxiliary
|
|
!
|
|
!> \par Further Details:
|
|
! =====================
|
|
!>
|
|
!> \verbatim
|
|
!>
|
|
!> Based on the algorithm from
|
|
!>
|
|
!> Anderson E. (2017)
|
|
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
|
|
!> ACM Trans Math Softw 44:1--28
|
|
!> https://doi.org/10.1145/3061665
|
|
!>
|
|
!> \endverbatim
|
|
!
|
|
subroutine CLARTG( f, g, c, s, r )
|
|
use LA_CONSTANTS, &
|
|
only: wp=>sp, zero=>szero, one=>sone, two=>stwo, czero, &
|
|
safmin=>ssafmin, safmax=>ssafmax
|
|
!
|
|
! -- LAPACK auxiliary routine --
|
|
! -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
! February 2021
|
|
!
|
|
! .. Scalar Arguments ..
|
|
real(wp) c
|
|
complex(wp) f, g, r, s
|
|
! ..
|
|
! .. Local Scalars ..
|
|
real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmin, rtmax
|
|
complex(wp) :: fs, gs, t
|
|
! ..
|
|
! .. Intrinsic Functions ..
|
|
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
|
|
! ..
|
|
! .. Statement Functions ..
|
|
real(wp) :: ABSSQ
|
|
! ..
|
|
! .. Statement Function definitions ..
|
|
ABSSQ( t ) = real( t )**2 + aimag( t )**2
|
|
! ..
|
|
! .. Constants ..
|
|
rtmin = sqrt( safmin )
|
|
! ..
|
|
! .. Executable Statements ..
|
|
!
|
|
if( g == czero ) then
|
|
c = one
|
|
s = czero
|
|
r = f
|
|
else if( f == czero ) then
|
|
c = zero
|
|
if( real(g) == zero ) then
|
|
r = abs(aimag(g))
|
|
s = conjg( g ) / r
|
|
elseif( aimag(g) == zero ) then
|
|
r = abs(real(g))
|
|
s = conjg( g ) / r
|
|
else
|
|
g1 = max( abs(real(g)), abs(aimag(g)) )
|
|
rtmax = sqrt( safmax/2 )
|
|
if( g1 > rtmin .and. g1 < rtmax ) then
|
|
!
|
|
! Use unscaled algorithm
|
|
!
|
|
! The following two lines can be replaced by `d = abs( g )`.
|
|
! This algorithm do not use the intrinsic complex abs.
|
|
g2 = ABSSQ( g )
|
|
d = sqrt( g2 )
|
|
s = conjg( g ) / d
|
|
r = d
|
|
else
|
|
!
|
|
! Use scaled algorithm
|
|
!
|
|
u = min( safmax, max( safmin, g1 ) )
|
|
gs = g / u
|
|
! The following two lines can be replaced by `d = abs( gs )`.
|
|
! This algorithm do not use the intrinsic complex abs.
|
|
g2 = ABSSQ( gs )
|
|
d = sqrt( g2 )
|
|
s = conjg( gs ) / d
|
|
r = d*u
|
|
end if
|
|
end if
|
|
else
|
|
f1 = max( abs(real(f)), abs(aimag(f)) )
|
|
g1 = max( abs(real(g)), abs(aimag(g)) )
|
|
rtmax = sqrt( safmax/4 )
|
|
if( f1 > rtmin .and. f1 < rtmax .and. &
|
|
g1 > rtmin .and. g1 < rtmax ) then
|
|
!
|
|
! Use unscaled algorithm
|
|
!
|
|
f2 = ABSSQ( f )
|
|
g2 = ABSSQ( g )
|
|
h2 = f2 + g2
|
|
! safmin <= f2 <= h2 <= safmax
|
|
if( f2 >= h2 * safmin ) then
|
|
! safmin <= f2/h2 <= 1, and h2/f2 is finite
|
|
c = sqrt( f2 / h2 )
|
|
r = f / c
|
|
rtmax = rtmax * 2
|
|
if( f2 > rtmin .and. h2 < rtmax ) then
|
|
! safmin <= sqrt( f2*h2 ) <= safmax
|
|
s = conjg( g ) * ( f / sqrt( f2*h2 ) )
|
|
else
|
|
s = conjg( g ) * ( r / h2 )
|
|
end if
|
|
else
|
|
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
|
|
! Moreover,
|
|
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
|
|
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
|
|
! Also,
|
|
! g2 >> f2, which means that h2 = g2.
|
|
d = sqrt( f2 * h2 )
|
|
c = f2 / d
|
|
if( c >= safmin ) then
|
|
r = f / c
|
|
else
|
|
! f2 / sqrt(f2 * h2) < safmin, then
|
|
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
|
|
r = f * ( h2 / d )
|
|
end if
|
|
s = conjg( g ) * ( f / d )
|
|
end if
|
|
else
|
|
!
|
|
! Use scaled algorithm
|
|
!
|
|
u = min( safmax, max( safmin, f1, g1 ) )
|
|
gs = g / u
|
|
g2 = ABSSQ( gs )
|
|
if( f1 / u < rtmin ) then
|
|
!
|
|
! f is not well-scaled when scaled by g1.
|
|
! Use a different scaling for f.
|
|
!
|
|
v = min( safmax, max( safmin, f1 ) )
|
|
w = v / u
|
|
fs = f / v
|
|
f2 = ABSSQ( fs )
|
|
h2 = f2*w**2 + g2
|
|
else
|
|
!
|
|
! Otherwise use the same scaling for f and g.
|
|
!
|
|
w = one
|
|
fs = f / u
|
|
f2 = ABSSQ( fs )
|
|
h2 = f2 + g2
|
|
end if
|
|
! safmin <= f2 <= h2 <= safmax
|
|
if( f2 >= h2 * safmin ) then
|
|
! safmin <= f2/h2 <= 1, and h2/f2 is finite
|
|
c = sqrt( f2 / h2 )
|
|
r = fs / c
|
|
rtmax = rtmax * 2
|
|
if( f2 > rtmin .and. h2 < rtmax ) then
|
|
! safmin <= sqrt( f2*h2 ) <= safmax
|
|
s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
|
|
else
|
|
s = conjg( gs ) * ( r / h2 )
|
|
end if
|
|
else
|
|
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
|
|
! Moreover,
|
|
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
|
|
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
|
|
! Also,
|
|
! g2 >> f2, which means that h2 = g2.
|
|
d = sqrt( f2 * h2 )
|
|
c = f2 / d
|
|
if( c >= safmin ) then
|
|
r = fs / c
|
|
else
|
|
! f2 / sqrt(f2 * h2) < safmin, then
|
|
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
|
|
r = fs * ( h2 / d )
|
|
end if
|
|
s = conjg( gs ) * ( fs / d )
|
|
end if
|
|
! Rescale c and r
|
|
c = c * w
|
|
r = r * u
|
|
end if
|
|
end if
|
|
return
|
|
end subroutine
|
|
|