You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
5.6 KiB
220 lines
5.6 KiB
*> \brief \b CPTCON
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CPTCON + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cptcon.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cptcon.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cptcon.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, N
|
|
* REAL ANORM, RCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL D( * ), RWORK( * )
|
|
* COMPLEX E( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CPTCON computes the reciprocal of the condition number (in the
|
|
*> 1-norm) of a complex Hermitian positive definite tridiagonal matrix
|
|
*> using the factorization A = L*D*L**H or A = U**H*D*U computed by
|
|
*> CPTTRF.
|
|
*>
|
|
*> Norm(inv(A)) is computed by a direct method, and the reciprocal of
|
|
*> the condition number is computed as
|
|
*> RCOND = 1 / (ANORM * norm(inv(A))).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The n diagonal elements of the diagonal matrix D from the
|
|
*> factorization of A, as computed by CPTTRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is COMPLEX array, dimension (N-1)
|
|
*> The (n-1) off-diagonal elements of the unit bidiagonal factor
|
|
*> U or L from the factorization of A, as computed by CPTTRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ANORM
|
|
*> \verbatim
|
|
*> ANORM is REAL
|
|
*> The 1-norm of the original matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCOND
|
|
*> \verbatim
|
|
*> RCOND is REAL
|
|
*> The reciprocal of the condition number of the matrix A,
|
|
*> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
|
|
*> 1-norm of inv(A) computed in this routine.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexPTcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The method used is described in Nicholas J. Higham, "Efficient
|
|
*> Algorithms for Computing the Condition Number of a Tridiagonal
|
|
*> Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, N
|
|
REAL ANORM, RCOND
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL D( * ), RWORK( * )
|
|
COMPLEX E( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IX
|
|
REAL AINVNM
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ISAMAX
|
|
EXTERNAL ISAMAX
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments.
|
|
*
|
|
INFO = 0
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( ANORM.LT.ZERO ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CPTCON', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
RCOND = ZERO
|
|
IF( N.EQ.0 ) THEN
|
|
RCOND = ONE
|
|
RETURN
|
|
ELSE IF( ANORM.EQ.ZERO ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Check that D(1:N) is positive.
|
|
*
|
|
DO 10 I = 1, N
|
|
IF( D( I ).LE.ZERO )
|
|
$ RETURN
|
|
10 CONTINUE
|
|
*
|
|
* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
|
|
*
|
|
* m(i,j) = abs(A(i,j)), i = j,
|
|
* m(i,j) = -abs(A(i,j)), i .ne. j,
|
|
*
|
|
* and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**H.
|
|
*
|
|
* Solve M(L) * x = e.
|
|
*
|
|
RWORK( 1 ) = ONE
|
|
DO 20 I = 2, N
|
|
RWORK( I ) = ONE + RWORK( I-1 )*ABS( E( I-1 ) )
|
|
20 CONTINUE
|
|
*
|
|
* Solve D * M(L)**H * x = b.
|
|
*
|
|
RWORK( N ) = RWORK( N ) / D( N )
|
|
DO 30 I = N - 1, 1, -1
|
|
RWORK( I ) = RWORK( I ) / D( I ) + RWORK( I+1 )*ABS( E( I ) )
|
|
30 CONTINUE
|
|
*
|
|
* Compute AINVNM = max(x(i)), 1<=i<=n.
|
|
*
|
|
IX = ISAMAX( N, RWORK, 1 )
|
|
AINVNM = ABS( RWORK( IX ) )
|
|
*
|
|
* Compute the reciprocal condition number.
|
|
*
|
|
IF( AINVNM.NE.ZERO )
|
|
$ RCOND = ( ONE / AINVNM ) / ANORM
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CPTCON
|
|
*
|
|
END
|
|
|