You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
4.0 KiB
159 lines
4.0 KiB
*> \brief \b CROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CROT + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/crot.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/crot.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/crot.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CROT( N, CX, INCX, CY, INCY, C, S )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INCX, INCY, N
|
|
* REAL C
|
|
* COMPLEX S
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX CX( * ), CY( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CROT applies a plane rotation, where the cos (C) is real and the
|
|
*> sin (S) is complex, and the vectors CX and CY are complex.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of elements in the vectors CX and CY.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] CX
|
|
*> \verbatim
|
|
*> CX is COMPLEX array, dimension (N)
|
|
*> On input, the vector X.
|
|
*> On output, CX is overwritten with C*X + S*Y.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCX
|
|
*> \verbatim
|
|
*> INCX is INTEGER
|
|
*> The increment between successive values of CX. INCX <> 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] CY
|
|
*> \verbatim
|
|
*> CY is COMPLEX array, dimension (N)
|
|
*> On input, the vector Y.
|
|
*> On output, CY is overwritten with -CONJG(S)*X + C*Y.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] INCY
|
|
*> \verbatim
|
|
*> INCY is INTEGER
|
|
*> The increment between successive values of CY. INCX <> 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] C
|
|
*> \verbatim
|
|
*> C is REAL
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] S
|
|
*> \verbatim
|
|
*> S is COMPLEX
|
|
*> C and S define a rotation
|
|
*> [ C S ]
|
|
*> [ -conjg(S) C ]
|
|
*> where C*C + S*CONJG(S) = 1.0.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERauxiliary
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CROT( N, CX, INCX, CY, INCY, C, S )
|
|
*
|
|
* -- LAPACK auxiliary routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INCX, INCY, N
|
|
REAL C
|
|
COMPLEX S
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX CX( * ), CY( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER I, IX, IY
|
|
COMPLEX STEMP
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC CONJG
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
IF( INCX.EQ.1 .AND. INCY.EQ.1 )
|
|
$ GO TO 20
|
|
*
|
|
* Code for unequal increments or equal increments not equal to 1
|
|
*
|
|
IX = 1
|
|
IY = 1
|
|
IF( INCX.LT.0 )
|
|
$ IX = ( -N+1 )*INCX + 1
|
|
IF( INCY.LT.0 )
|
|
$ IY = ( -N+1 )*INCY + 1
|
|
DO 10 I = 1, N
|
|
STEMP = C*CX( IX ) + S*CY( IY )
|
|
CY( IY ) = C*CY( IY ) - CONJG( S )*CX( IX )
|
|
CX( IX ) = STEMP
|
|
IX = IX + INCX
|
|
IY = IY + INCY
|
|
10 CONTINUE
|
|
RETURN
|
|
*
|
|
* Code for both increments equal to 1
|
|
*
|
|
20 CONTINUE
|
|
DO 30 I = 1, N
|
|
STEMP = C*CX( I ) + S*CY( I )
|
|
CY( I ) = C*CY( I ) - CONJG( S )*CX( I )
|
|
CX( I ) = STEMP
|
|
30 CONTINUE
|
|
RETURN
|
|
END
|
|
|