You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
781 lines
26 KiB
781 lines
26 KiB
*> \brief \b CTGSEN
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CTGSEN + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsen.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsen.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsen.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
|
|
* ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
|
|
* WORK, LWORK, IWORK, LIWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL WANTQ, WANTZ
|
|
* INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
|
|
* $ M, N
|
|
* REAL PL, PR
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL SELECT( * )
|
|
* INTEGER IWORK( * )
|
|
* REAL DIF( * )
|
|
* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
|
* $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CTGSEN reorders the generalized Schur decomposition of a complex
|
|
*> matrix pair (A, B) (in terms of an unitary equivalence trans-
|
|
*> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
|
|
*> appears in the leading diagonal blocks of the pair (A,B). The leading
|
|
*> columns of Q and Z form unitary bases of the corresponding left and
|
|
*> right eigenspaces (deflating subspaces). (A, B) must be in
|
|
*> generalized Schur canonical form, that is, A and B are both upper
|
|
*> triangular.
|
|
*>
|
|
*> CTGSEN also computes the generalized eigenvalues
|
|
*>
|
|
*> w(j)= ALPHA(j) / BETA(j)
|
|
*>
|
|
*> of the reordered matrix pair (A, B).
|
|
*>
|
|
*> Optionally, the routine computes estimates of reciprocal condition
|
|
*> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
|
|
*> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
|
|
*> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
|
|
*> the selected cluster and the eigenvalues outside the cluster, resp.,
|
|
*> and norms of "projections" onto left and right eigenspaces w.r.t.
|
|
*> the selected cluster in the (1,1)-block.
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] IJOB
|
|
*> \verbatim
|
|
*> IJOB is INTEGER
|
|
*> Specifies whether condition numbers are required for the
|
|
*> cluster of eigenvalues (PL and PR) or the deflating subspaces
|
|
*> (Difu and Difl):
|
|
*> =0: Only reorder w.r.t. SELECT. No extras.
|
|
*> =1: Reciprocal of norms of "projections" onto left and right
|
|
*> eigenspaces w.r.t. the selected cluster (PL and PR).
|
|
*> =2: Upper bounds on Difu and Difl. F-norm-based estimate
|
|
*> (DIF(1:2)).
|
|
*> =3: Estimate of Difu and Difl. 1-norm-based estimate
|
|
*> (DIF(1:2)).
|
|
*> About 5 times as expensive as IJOB = 2.
|
|
*> =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
|
|
*> version to get it all.
|
|
*> =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] WANTQ
|
|
*> \verbatim
|
|
*> WANTQ is LOGICAL
|
|
*> .TRUE. : update the left transformation matrix Q;
|
|
*> .FALSE.: do not update Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] WANTZ
|
|
*> \verbatim
|
|
*> WANTZ is LOGICAL
|
|
*> .TRUE. : update the right transformation matrix Z;
|
|
*> .FALSE.: do not update Z.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SELECT
|
|
*> \verbatim
|
|
*> SELECT is LOGICAL array, dimension (N)
|
|
*> SELECT specifies the eigenvalues in the selected cluster. To
|
|
*> select an eigenvalue w(j), SELECT(j) must be set to
|
|
*> .TRUE..
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrices A and B. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension(LDA,N)
|
|
*> On entry, the upper triangular matrix A, in generalized
|
|
*> Schur canonical form.
|
|
*> On exit, A is overwritten by the reordered matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension(LDB,N)
|
|
*> On entry, the upper triangular matrix B, in generalized
|
|
*> Schur canonical form.
|
|
*> On exit, B is overwritten by the reordered matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is COMPLEX array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BETA
|
|
*> \verbatim
|
|
*> BETA is COMPLEX array, dimension (N)
|
|
*>
|
|
*> The diagonal elements of A and B, respectively,
|
|
*> when the pair (A,B) has been reduced to generalized Schur
|
|
*> form. ALPHA(i)/BETA(i) i=1,...,N are the generalized
|
|
*> eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is COMPLEX array, dimension (LDQ,N)
|
|
*> On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
|
|
*> On exit, Q has been postmultiplied by the left unitary
|
|
*> transformation matrix which reorder (A, B); The leading M
|
|
*> columns of Q form orthonormal bases for the specified pair of
|
|
*> left eigenspaces (deflating subspaces).
|
|
*> If WANTQ = .FALSE., Q is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= 1.
|
|
*> If WANTQ = .TRUE., LDQ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is COMPLEX array, dimension (LDZ,N)
|
|
*> On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
|
|
*> On exit, Z has been postmultiplied by the left unitary
|
|
*> transformation matrix which reorder (A, B); The leading M
|
|
*> columns of Z form orthonormal bases for the specified pair of
|
|
*> left eigenspaces (deflating subspaces).
|
|
*> If WANTZ = .FALSE., Z is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1.
|
|
*> If WANTZ = .TRUE., LDZ >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The dimension of the specified pair of left and right
|
|
*> eigenspaces, (deflating subspaces) 0 <= M <= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PL
|
|
*> \verbatim
|
|
*> PL is REAL
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PR
|
|
*> \verbatim
|
|
*> PR is REAL
|
|
*>
|
|
*> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
|
|
*> reciprocal of the norm of "projections" onto left and right
|
|
*> eigenspace with respect to the selected cluster.
|
|
*> 0 < PL, PR <= 1.
|
|
*> If M = 0 or M = N, PL = PR = 1.
|
|
*> If IJOB = 0, 2 or 3 PL, PR are not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DIF
|
|
*> \verbatim
|
|
*> DIF is REAL array, dimension (2).
|
|
*> If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
|
|
*> If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
|
|
*> Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
|
|
*> estimates of Difu and Difl, computed using reversed
|
|
*> communication with CLACN2.
|
|
*> If M = 0 or N, DIF(1:2) = F-norm([A, B]).
|
|
*> If IJOB = 0 or 1, DIF is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= 1
|
|
*> If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M)
|
|
*> If IJOB = 3 or 5, LWORK >= 4*M*(N-M)
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
|
|
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LIWORK
|
|
*> \verbatim
|
|
*> LIWORK is INTEGER
|
|
*> The dimension of the array IWORK. LIWORK >= 1.
|
|
*> If IJOB = 1, 2 or 4, LIWORK >= N+2;
|
|
*> If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
|
|
*>
|
|
*> If LIWORK = -1, then a workspace query is assumed; the
|
|
*> routine only calculates the optimal size of the IWORK array,
|
|
*> returns this value as the first entry of the IWORK array, and
|
|
*> no error message related to LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> =0: Successful exit.
|
|
*> <0: If INFO = -i, the i-th argument had an illegal value.
|
|
*> =1: Reordering of (A, B) failed because the transformed
|
|
*> matrix pair (A, B) would be too far from generalized
|
|
*> Schur form; the problem is very ill-conditioned.
|
|
*> (A, B) may have been partially reordered.
|
|
*> If requested, 0 is returned in DIF(*), PL and PR.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CTGSEN first collects the selected eigenvalues by computing unitary
|
|
*> U and W that move them to the top left corner of (A, B). In other
|
|
*> words, the selected eigenvalues are the eigenvalues of (A11, B11) in
|
|
*>
|
|
*> U**H*(A, B)*W = (A11 A12) (B11 B12) n1
|
|
*> ( 0 A22),( 0 B22) n2
|
|
*> n1 n2 n1 n2
|
|
*>
|
|
*> where N = n1+n2 and U**H means the conjugate transpose of U. The first
|
|
*> n1 columns of U and W span the specified pair of left and right
|
|
*> eigenspaces (deflating subspaces) of (A, B).
|
|
*>
|
|
*> If (A, B) has been obtained from the generalized real Schur
|
|
*> decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
|
|
*> reordered generalized Schur form of (C, D) is given by
|
|
*>
|
|
*> (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
|
|
*>
|
|
*> and the first n1 columns of Q*U and Z*W span the corresponding
|
|
*> deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
|
|
*>
|
|
*> Note that if the selected eigenvalue is sufficiently ill-conditioned,
|
|
*> then its value may differ significantly from its value before
|
|
*> reordering.
|
|
*>
|
|
*> The reciprocal condition numbers of the left and right eigenspaces
|
|
*> spanned by the first n1 columns of U and W (or Q*U and Z*W) may
|
|
*> be returned in DIF(1:2), corresponding to Difu and Difl, resp.
|
|
*>
|
|
*> The Difu and Difl are defined as:
|
|
*>
|
|
*> Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
|
|
*> and
|
|
*> Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
|
|
*>
|
|
*> where sigma-min(Zu) is the smallest singular value of the
|
|
*> (2*n1*n2)-by-(2*n1*n2) matrix
|
|
*>
|
|
*> Zu = [ kron(In2, A11) -kron(A22**H, In1) ]
|
|
*> [ kron(In2, B11) -kron(B22**H, In1) ].
|
|
*>
|
|
*> Here, Inx is the identity matrix of size nx and A22**H is the
|
|
*> conjugate transpose of A22. kron(X, Y) is the Kronecker product between
|
|
*> the matrices X and Y.
|
|
*>
|
|
*> When DIF(2) is small, small changes in (A, B) can cause large changes
|
|
*> in the deflating subspace. An approximate (asymptotic) bound on the
|
|
*> maximum angular error in the computed deflating subspaces is
|
|
*>
|
|
*> EPS * norm((A, B)) / DIF(2),
|
|
*>
|
|
*> where EPS is the machine precision.
|
|
*>
|
|
*> The reciprocal norm of the projectors on the left and right
|
|
*> eigenspaces associated with (A11, B11) may be returned in PL and PR.
|
|
*> They are computed as follows. First we compute L and R so that
|
|
*> P*(A, B)*Q is block diagonal, where
|
|
*>
|
|
*> P = ( I -L ) n1 Q = ( I R ) n1
|
|
*> ( 0 I ) n2 and ( 0 I ) n2
|
|
*> n1 n2 n1 n2
|
|
*>
|
|
*> and (L, R) is the solution to the generalized Sylvester equation
|
|
*>
|
|
*> A11*R - L*A22 = -A12
|
|
*> B11*R - L*B22 = -B12
|
|
*>
|
|
*> Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
|
|
*> An approximate (asymptotic) bound on the average absolute error of
|
|
*> the selected eigenvalues is
|
|
*>
|
|
*> EPS * norm((A, B)) / PL.
|
|
*>
|
|
*> There are also global error bounds which valid for perturbations up
|
|
*> to a certain restriction: A lower bound (x) on the smallest
|
|
*> F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
|
|
*> coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
|
|
*> (i.e. (A + E, B + F), is
|
|
*>
|
|
*> x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
|
|
*>
|
|
*> An approximate bound on x can be computed from DIF(1:2), PL and PR.
|
|
*>
|
|
*> If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
|
|
*> (L', R') and unperturbed (L, R) left and right deflating subspaces
|
|
*> associated with the selected cluster in the (1,1)-blocks can be
|
|
*> bounded as
|
|
*>
|
|
*> max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
|
|
*> max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
|
|
*>
|
|
*> See LAPACK User's Guide section 4.11 or the following references
|
|
*> for more information.
|
|
*>
|
|
*> Note that if the default method for computing the Frobenius-norm-
|
|
*> based estimate DIF is not wanted (see CLATDF), then the parameter
|
|
*> IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF
|
|
*> (IJOB = 2 will be used)). See CTGSYL for more details.
|
|
*> \endverbatim
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
|
*> Umea University, S-901 87 Umea, Sweden.
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
|
|
*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
|
|
*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
|
|
*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
|
|
*> \n
|
|
*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
|
|
*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
|
|
*> Estimation: Theory, Algorithms and Software, Report
|
|
*> UMINF - 94.04, Department of Computing Science, Umea University,
|
|
*> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
|
|
*> To appear in Numerical Algorithms, 1996.
|
|
*> \n
|
|
*> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
|
|
*> for Solving the Generalized Sylvester Equation and Estimating the
|
|
*> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
|
|
*> Department of Computing Science, Umea University, S-901 87 Umea,
|
|
*> Sweden, December 1993, Revised April 1994, Also as LAPACK working
|
|
*> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
|
|
*> 1996.
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
|
|
$ ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
|
|
$ WORK, LWORK, IWORK, LIWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL WANTQ, WANTZ
|
|
INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
|
|
$ M, N
|
|
REAL PL, PR
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL SELECT( * )
|
|
INTEGER IWORK( * )
|
|
REAL DIF( * )
|
|
COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
|
|
$ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER IDIFJB
|
|
PARAMETER ( IDIFJB = 3 )
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
|
|
INTEGER I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
|
|
$ N1, N2
|
|
REAL DSCALE, DSUM, RDSCAL, SAFMIN
|
|
COMPLEX TEMP1, TEMP2
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER ISAVE( 3 )
|
|
* ..
|
|
* .. External Subroutines ..
|
|
REAL SLAMCH
|
|
EXTERNAL CLACN2, CLACPY, CLASSQ, CSCAL, CTGEXC, CTGSYL,
|
|
$ SLAMCH, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, CMPLX, CONJG, MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and test the input parameters
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
|
|
*
|
|
IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
|
|
INFO = -13
|
|
ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
|
|
INFO = -15
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CTGSEN', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
IERR = 0
|
|
*
|
|
WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
|
|
WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
|
|
WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
|
|
WANTD = WANTD1 .OR. WANTD2
|
|
*
|
|
* Set M to the dimension of the specified pair of deflating
|
|
* subspaces.
|
|
*
|
|
M = 0
|
|
IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
|
|
DO 10 K = 1, N
|
|
ALPHA( K ) = A( K, K )
|
|
BETA( K ) = B( K, K )
|
|
IF( K.LT.N ) THEN
|
|
IF( SELECT( K ) )
|
|
$ M = M + 1
|
|
ELSE
|
|
IF( SELECT( N ) )
|
|
$ M = M + 1
|
|
END IF
|
|
10 CONTINUE
|
|
END IF
|
|
*
|
|
IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
|
|
LWMIN = MAX( 1, 2*M*(N-M) )
|
|
LIWMIN = MAX( 1, N+2 )
|
|
ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
|
|
LWMIN = MAX( 1, 4*M*(N-M) )
|
|
LIWMIN = MAX( 1, 2*M*(N-M), N+2 )
|
|
ELSE
|
|
LWMIN = 1
|
|
LIWMIN = 1
|
|
END IF
|
|
*
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
*
|
|
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -21
|
|
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -23
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CTGSEN', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
IF( M.EQ.N .OR. M.EQ.0 ) THEN
|
|
IF( WANTP ) THEN
|
|
PL = ONE
|
|
PR = ONE
|
|
END IF
|
|
IF( WANTD ) THEN
|
|
DSCALE = ZERO
|
|
DSUM = ONE
|
|
DO 20 I = 1, N
|
|
CALL CLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
|
|
CALL CLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
|
|
20 CONTINUE
|
|
DIF( 1 ) = DSCALE*SQRT( DSUM )
|
|
DIF( 2 ) = DIF( 1 )
|
|
END IF
|
|
GO TO 70
|
|
END IF
|
|
*
|
|
* Get machine constant
|
|
*
|
|
SAFMIN = SLAMCH( 'S' )
|
|
*
|
|
* Collect the selected blocks at the top-left corner of (A, B).
|
|
*
|
|
KS = 0
|
|
DO 30 K = 1, N
|
|
SWAP = SELECT( K )
|
|
IF( SWAP ) THEN
|
|
KS = KS + 1
|
|
*
|
|
* Swap the K-th block to position KS. Compute unitary Q
|
|
* and Z that will swap adjacent diagonal blocks in (A, B).
|
|
*
|
|
IF( K.NE.KS )
|
|
$ CALL CTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
|
|
$ LDZ, K, KS, IERR )
|
|
*
|
|
IF( IERR.GT.0 ) THEN
|
|
*
|
|
* Swap is rejected: exit.
|
|
*
|
|
INFO = 1
|
|
IF( WANTP ) THEN
|
|
PL = ZERO
|
|
PR = ZERO
|
|
END IF
|
|
IF( WANTD ) THEN
|
|
DIF( 1 ) = ZERO
|
|
DIF( 2 ) = ZERO
|
|
END IF
|
|
GO TO 70
|
|
END IF
|
|
END IF
|
|
30 CONTINUE
|
|
IF( WANTP ) THEN
|
|
*
|
|
* Solve generalized Sylvester equation for R and L:
|
|
* A11 * R - L * A22 = A12
|
|
* B11 * R - L * B22 = B12
|
|
*
|
|
N1 = M
|
|
N2 = N - M
|
|
I = N1 + 1
|
|
CALL CLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
|
|
CALL CLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
|
|
$ N1 )
|
|
IJB = 0
|
|
CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
|
|
$ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
|
|
$ DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
|
|
$ LWORK-2*N1*N2, IWORK, IERR )
|
|
*
|
|
* Estimate the reciprocal of norms of "projections" onto
|
|
* left and right eigenspaces
|
|
*
|
|
RDSCAL = ZERO
|
|
DSUM = ONE
|
|
CALL CLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
|
|
PL = RDSCAL*SQRT( DSUM )
|
|
IF( PL.EQ.ZERO ) THEN
|
|
PL = ONE
|
|
ELSE
|
|
PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
|
|
END IF
|
|
RDSCAL = ZERO
|
|
DSUM = ONE
|
|
CALL CLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
|
|
PR = RDSCAL*SQRT( DSUM )
|
|
IF( PR.EQ.ZERO ) THEN
|
|
PR = ONE
|
|
ELSE
|
|
PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
|
|
END IF
|
|
END IF
|
|
IF( WANTD ) THEN
|
|
*
|
|
* Compute estimates Difu and Difl.
|
|
*
|
|
IF( WANTD1 ) THEN
|
|
N1 = M
|
|
N2 = N - M
|
|
I = N1 + 1
|
|
IJB = IDIFJB
|
|
*
|
|
* Frobenius norm-based Difu estimate.
|
|
*
|
|
CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
|
|
$ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
|
|
$ N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
|
|
$ LWORK-2*N1*N2, IWORK, IERR )
|
|
*
|
|
* Frobenius norm-based Difl estimate.
|
|
*
|
|
CALL CTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
|
|
$ N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
|
|
$ N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
|
|
$ LWORK-2*N1*N2, IWORK, IERR )
|
|
ELSE
|
|
*
|
|
* Compute 1-norm-based estimates of Difu and Difl using
|
|
* reversed communication with CLACN2. In each step a
|
|
* generalized Sylvester equation or a transposed variant
|
|
* is solved.
|
|
*
|
|
KASE = 0
|
|
N1 = M
|
|
N2 = N - M
|
|
I = N1 + 1
|
|
IJB = 0
|
|
MN2 = 2*N1*N2
|
|
*
|
|
* 1-norm-based estimate of Difu.
|
|
*
|
|
40 CONTINUE
|
|
CALL CLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
|
|
$ ISAVE )
|
|
IF( KASE.NE.0 ) THEN
|
|
IF( KASE.EQ.1 ) THEN
|
|
*
|
|
* Solve generalized Sylvester equation
|
|
*
|
|
CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
|
|
$ WORK, N1, B, LDB, B( I, I ), LDB,
|
|
$ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
|
|
$ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
|
|
$ IERR )
|
|
ELSE
|
|
*
|
|
* Solve the transposed variant.
|
|
*
|
|
CALL CTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
|
|
$ WORK, N1, B, LDB, B( I, I ), LDB,
|
|
$ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
|
|
$ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
|
|
$ IERR )
|
|
END IF
|
|
GO TO 40
|
|
END IF
|
|
DIF( 1 ) = DSCALE / DIF( 1 )
|
|
*
|
|
* 1-norm-based estimate of Difl.
|
|
*
|
|
50 CONTINUE
|
|
CALL CLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
|
|
$ ISAVE )
|
|
IF( KASE.NE.0 ) THEN
|
|
IF( KASE.EQ.1 ) THEN
|
|
*
|
|
* Solve generalized Sylvester equation
|
|
*
|
|
CALL CTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
|
|
$ WORK, N2, B( I, I ), LDB, B, LDB,
|
|
$ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
|
|
$ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
|
|
$ IERR )
|
|
ELSE
|
|
*
|
|
* Solve the transposed variant.
|
|
*
|
|
CALL CTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
|
|
$ WORK, N2, B, LDB, B( I, I ), LDB,
|
|
$ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
|
|
$ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
|
|
$ IERR )
|
|
END IF
|
|
GO TO 50
|
|
END IF
|
|
DIF( 2 ) = DSCALE / DIF( 2 )
|
|
END IF
|
|
END IF
|
|
*
|
|
* If B(K,K) is complex, make it real and positive (normalization
|
|
* of the generalized Schur form) and Store the generalized
|
|
* eigenvalues of reordered pair (A, B)
|
|
*
|
|
DO 60 K = 1, N
|
|
DSCALE = ABS( B( K, K ) )
|
|
IF( DSCALE.GT.SAFMIN ) THEN
|
|
TEMP1 = CONJG( B( K, K ) / DSCALE )
|
|
TEMP2 = B( K, K ) / DSCALE
|
|
B( K, K ) = DSCALE
|
|
CALL CSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
|
|
CALL CSCAL( N-K+1, TEMP1, A( K, K ), LDA )
|
|
IF( WANTQ )
|
|
$ CALL CSCAL( N, TEMP2, Q( 1, K ), 1 )
|
|
ELSE
|
|
B( K, K ) = CMPLX( ZERO, ZERO )
|
|
END IF
|
|
*
|
|
ALPHA( K ) = A( K, K )
|
|
BETA( K ) = B( K, K )
|
|
*
|
|
60 CONTINUE
|
|
*
|
|
70 CONTINUE
|
|
*
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CTGSEN
|
|
*
|
|
END
|
|
|