You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
515 lines
16 KiB
515 lines
16 KiB
*> \brief \b CTGSNA
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CTGSNA + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsna.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsna.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsna.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
|
|
* LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
|
|
* IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER HOWMNY, JOB
|
|
* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL SELECT( * )
|
|
* INTEGER IWORK( * )
|
|
* REAL DIF( * ), S( * )
|
|
* COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
|
|
* $ VR( LDVR, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CTGSNA estimates reciprocal condition numbers for specified
|
|
*> eigenvalues and/or eigenvectors of a matrix pair (A, B).
|
|
*>
|
|
*> (A, B) must be in generalized Schur canonical form, that is, A and
|
|
*> B are both upper triangular.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOB
|
|
*> \verbatim
|
|
*> JOB is CHARACTER*1
|
|
*> Specifies whether condition numbers are required for
|
|
*> eigenvalues (S) or eigenvectors (DIF):
|
|
*> = 'E': for eigenvalues only (S);
|
|
*> = 'V': for eigenvectors only (DIF);
|
|
*> = 'B': for both eigenvalues and eigenvectors (S and DIF).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] HOWMNY
|
|
*> \verbatim
|
|
*> HOWMNY is CHARACTER*1
|
|
*> = 'A': compute condition numbers for all eigenpairs;
|
|
*> = 'S': compute condition numbers for selected eigenpairs
|
|
*> specified by the array SELECT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SELECT
|
|
*> \verbatim
|
|
*> SELECT is LOGICAL array, dimension (N)
|
|
*> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
|
|
*> condition numbers are required. To select condition numbers
|
|
*> for the corresponding j-th eigenvalue and/or eigenvector,
|
|
*> SELECT(j) must be set to .TRUE..
|
|
*> If HOWMNY = 'A', SELECT is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the square matrix pair (A, B). N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> The upper triangular matrix A in the pair (A,B).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (LDB,N)
|
|
*> The upper triangular matrix B in the pair (A, B).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VL
|
|
*> \verbatim
|
|
*> VL is COMPLEX array, dimension (LDVL,M)
|
|
*> IF JOB = 'E' or 'B', VL must contain left eigenvectors of
|
|
*> (A, B), corresponding to the eigenpairs specified by HOWMNY
|
|
*> and SELECT. The eigenvectors must be stored in consecutive
|
|
*> columns of VL, as returned by CTGEVC.
|
|
*> If JOB = 'V', VL is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVL
|
|
*> \verbatim
|
|
*> LDVL is INTEGER
|
|
*> The leading dimension of the array VL. LDVL >= 1; and
|
|
*> If JOB = 'E' or 'B', LDVL >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VR
|
|
*> \verbatim
|
|
*> VR is COMPLEX array, dimension (LDVR,M)
|
|
*> IF JOB = 'E' or 'B', VR must contain right eigenvectors of
|
|
*> (A, B), corresponding to the eigenpairs specified by HOWMNY
|
|
*> and SELECT. The eigenvectors must be stored in consecutive
|
|
*> columns of VR, as returned by CTGEVC.
|
|
*> If JOB = 'V', VR is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVR
|
|
*> \verbatim
|
|
*> LDVR is INTEGER
|
|
*> The leading dimension of the array VR. LDVR >= 1;
|
|
*> If JOB = 'E' or 'B', LDVR >= N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension (MM)
|
|
*> If JOB = 'E' or 'B', the reciprocal condition numbers of the
|
|
*> selected eigenvalues, stored in consecutive elements of the
|
|
*> array.
|
|
*> If JOB = 'V', S is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DIF
|
|
*> \verbatim
|
|
*> DIF is REAL array, dimension (MM)
|
|
*> If JOB = 'V' or 'B', the estimated reciprocal condition
|
|
*> numbers of the selected eigenvectors, stored in consecutive
|
|
*> elements of the array.
|
|
*> If the eigenvalues cannot be reordered to compute DIF(j),
|
|
*> DIF(j) is set to 0; this can only occur when the true value
|
|
*> would be very small anyway.
|
|
*> For each eigenvalue/vector specified by SELECT, DIF stores
|
|
*> a Frobenius norm-based estimate of Difl.
|
|
*> If JOB = 'E', DIF is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MM
|
|
*> \verbatim
|
|
*> MM is INTEGER
|
|
*> The number of elements in the arrays S and DIF. MM >= M.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of elements of the arrays S and DIF used to store
|
|
*> the specified condition numbers; for each selected eigenvalue
|
|
*> one element is used. If HOWMNY = 'A', M is set to N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,N).
|
|
*> If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (N+2)
|
|
*> If JOB = 'E', IWORK is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: Successful exit
|
|
*> < 0: If INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complexOTHERcomputational
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> The reciprocal of the condition number of the i-th generalized
|
|
*> eigenvalue w = (a, b) is defined as
|
|
*>
|
|
*> S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
|
|
*>
|
|
*> where u and v are the right and left eigenvectors of (A, B)
|
|
*> corresponding to w; |z| denotes the absolute value of the complex
|
|
*> number, and norm(u) denotes the 2-norm of the vector u. The pair
|
|
*> (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
|
|
*> matrix pair (A, B). If both a and b equal zero, then (A,B) is
|
|
*> singular and S(I) = -1 is returned.
|
|
*>
|
|
*> An approximate error bound on the chordal distance between the i-th
|
|
*> computed generalized eigenvalue w and the corresponding exact
|
|
*> eigenvalue lambda is
|
|
*>
|
|
*> chord(w, lambda) <= EPS * norm(A, B) / S(I),
|
|
*>
|
|
*> where EPS is the machine precision.
|
|
*>
|
|
*> The reciprocal of the condition number of the right eigenvector u
|
|
*> and left eigenvector v corresponding to the generalized eigenvalue w
|
|
*> is defined as follows. Suppose
|
|
*>
|
|
*> (A, B) = ( a * ) ( b * ) 1
|
|
*> ( 0 A22 ),( 0 B22 ) n-1
|
|
*> 1 n-1 1 n-1
|
|
*>
|
|
*> Then the reciprocal condition number DIF(I) is
|
|
*>
|
|
*> Difl[(a, b), (A22, B22)] = sigma-min( Zl )
|
|
*>
|
|
*> where sigma-min(Zl) denotes the smallest singular value of
|
|
*>
|
|
*> Zl = [ kron(a, In-1) -kron(1, A22) ]
|
|
*> [ kron(b, In-1) -kron(1, B22) ].
|
|
*>
|
|
*> Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
|
|
*> transpose of X. kron(X, Y) is the Kronecker product between the
|
|
*> matrices X and Y.
|
|
*>
|
|
*> We approximate the smallest singular value of Zl with an upper
|
|
*> bound. This is done by CLATDF.
|
|
*>
|
|
*> An approximate error bound for a computed eigenvector VL(i) or
|
|
*> VR(i) is given by
|
|
*>
|
|
*> EPS * norm(A, B) / DIF(i).
|
|
*>
|
|
*> See ref. [2-3] for more details and further references.
|
|
*> \endverbatim
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
|
|
*> Umea University, S-901 87 Umea, Sweden.
|
|
*
|
|
*> \par References:
|
|
* ================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
|
|
*> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
|
|
*> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
|
|
*> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
|
|
*>
|
|
*> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
|
|
*> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
|
|
*> Estimation: Theory, Algorithms and Software, Report
|
|
*> UMINF - 94.04, Department of Computing Science, Umea University,
|
|
*> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
|
|
*> To appear in Numerical Algorithms, 1996.
|
|
*>
|
|
*> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
|
|
*> for Solving the Generalized Sylvester Equation and Estimating the
|
|
*> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
|
|
*> Department of Computing Science, Umea University, S-901 87 Umea,
|
|
*> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
|
|
*> Note 75.
|
|
*> To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
|
|
$ LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
|
|
$ IWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER HOWMNY, JOB
|
|
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL SELECT( * )
|
|
INTEGER IWORK( * )
|
|
REAL DIF( * ), S( * )
|
|
COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
|
|
$ VR( LDVR, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
INTEGER IDIFJB
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, IDIFJB = 3 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, SOMCON, WANTBH, WANTDF, WANTS
|
|
INTEGER I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
|
|
REAL BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
|
|
COMPLEX YHAX, YHBX
|
|
* ..
|
|
* .. Local Arrays ..
|
|
COMPLEX DUMMY( 1 ), DUMMY1( 1 )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL SCNRM2, SLAMCH, SLAPY2
|
|
COMPLEX CDOTC
|
|
EXTERNAL LSAME, SCNRM2, SLAMCH, SLAPY2, CDOTC
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CGEMV, CLACPY, CTGEXC, CTGSYL, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, CMPLX, MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Decode and test the input parameters
|
|
*
|
|
WANTBH = LSAME( JOB, 'B' )
|
|
WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
|
|
WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
|
|
*
|
|
SOMCON = LSAME( HOWMNY, 'S' )
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
|
|
INFO = -8
|
|
ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
|
|
INFO = -10
|
|
ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
|
|
INFO = -12
|
|
ELSE
|
|
*
|
|
* Set M to the number of eigenpairs for which condition numbers
|
|
* are required, and test MM.
|
|
*
|
|
IF( SOMCON ) THEN
|
|
M = 0
|
|
DO 10 K = 1, N
|
|
IF( SELECT( K ) )
|
|
$ M = M + 1
|
|
10 CONTINUE
|
|
ELSE
|
|
M = N
|
|
END IF
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
LWMIN = 1
|
|
ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
|
|
LWMIN = 2*N*N
|
|
ELSE
|
|
LWMIN = N
|
|
END IF
|
|
WORK( 1 ) = LWMIN
|
|
*
|
|
IF( MM.LT.M ) THEN
|
|
INFO = -15
|
|
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
|
|
INFO = -18
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'CTGSNA', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Get machine constants
|
|
*
|
|
EPS = SLAMCH( 'P' )
|
|
SMLNUM = SLAMCH( 'S' ) / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
KS = 0
|
|
DO 20 K = 1, N
|
|
*
|
|
* Determine whether condition numbers are required for the k-th
|
|
* eigenpair.
|
|
*
|
|
IF( SOMCON ) THEN
|
|
IF( .NOT.SELECT( K ) )
|
|
$ GO TO 20
|
|
END IF
|
|
*
|
|
KS = KS + 1
|
|
*
|
|
IF( WANTS ) THEN
|
|
*
|
|
* Compute the reciprocal condition number of the k-th
|
|
* eigenvalue.
|
|
*
|
|
RNRM = SCNRM2( N, VR( 1, KS ), 1 )
|
|
LNRM = SCNRM2( N, VL( 1, KS ), 1 )
|
|
CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), A, LDA,
|
|
$ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
|
|
YHAX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
|
|
CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), B, LDB,
|
|
$ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
|
|
YHBX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
|
|
COND = SLAPY2( ABS( YHAX ), ABS( YHBX ) )
|
|
IF( COND.EQ.ZERO ) THEN
|
|
S( KS ) = -ONE
|
|
ELSE
|
|
S( KS ) = COND / ( RNRM*LNRM )
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( WANTDF ) THEN
|
|
IF( N.EQ.1 ) THEN
|
|
DIF( KS ) = SLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
|
|
ELSE
|
|
*
|
|
* Estimate the reciprocal condition number of the k-th
|
|
* eigenvectors.
|
|
*
|
|
* Copy the matrix (A, B) to the array WORK and move the
|
|
* (k,k)th pair to the (1,1) position.
|
|
*
|
|
CALL CLACPY( 'Full', N, N, A, LDA, WORK, N )
|
|
CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
|
|
IFST = K
|
|
ILST = 1
|
|
*
|
|
CALL CTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
|
|
$ N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
|
|
*
|
|
IF( IERR.GT.0 ) THEN
|
|
*
|
|
* Ill-conditioned problem - swap rejected.
|
|
*
|
|
DIF( KS ) = ZERO
|
|
ELSE
|
|
*
|
|
* Reordering successful, solve generalized Sylvester
|
|
* equation for R and L,
|
|
* A22 * R - L * A11 = A12
|
|
* B22 * R - L * B11 = B12,
|
|
* and compute estimate of Difl[(A11,B11), (A22, B22)].
|
|
*
|
|
N1 = 1
|
|
N2 = N - N1
|
|
I = N*N + 1
|
|
CALL CTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
|
|
$ N, WORK, N, WORK( N1+1 ), N,
|
|
$ WORK( N*N1+N1+I ), N, WORK( I ), N,
|
|
$ WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
|
|
$ 1, IWORK, IERR )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
20 CONTINUE
|
|
WORK( 1 ) = LWMIN
|
|
RETURN
|
|
*
|
|
* End of CTGSNA
|
|
*
|
|
END
|
|
|