You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
789 lines
27 KiB
789 lines
27 KiB
*> \brief \b DBDSVDX
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DBDSVDX + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsvdx.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsvdx.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsvdx.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DBDSVDX( UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
|
|
* $ NS, S, Z, LDZ, WORK, IWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBZ, RANGE, UPLO
|
|
* INTEGER IL, INFO, IU, LDZ, N, NS
|
|
* DOUBLE PRECISION VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION D( * ), E( * ), S( * ), WORK( * ),
|
|
* Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DBDSVDX computes the singular value decomposition (SVD) of a real
|
|
*> N-by-N (upper or lower) bidiagonal matrix B, B = U * S * VT,
|
|
*> where S is a diagonal matrix with non-negative diagonal elements
|
|
*> (the singular values of B), and U and VT are orthogonal matrices
|
|
*> of left and right singular vectors, respectively.
|
|
*>
|
|
*> Given an upper bidiagonal B with diagonal D = [ d_1 d_2 ... d_N ]
|
|
*> and superdiagonal E = [ e_1 e_2 ... e_N-1 ], DBDSVDX computes the
|
|
*> singular value decomposition of B through the eigenvalues and
|
|
*> eigenvectors of the N*2-by-N*2 tridiagonal matrix
|
|
*>
|
|
*> | 0 d_1 |
|
|
*> | d_1 0 e_1 |
|
|
*> TGK = | e_1 0 d_2 |
|
|
*> | d_2 . . |
|
|
*> | . . . |
|
|
*>
|
|
*> If (s,u,v) is a singular triplet of B with ||u|| = ||v|| = 1, then
|
|
*> (+/-s,q), ||q|| = 1, are eigenpairs of TGK, with q = P * ( u' +/-v' ) /
|
|
*> sqrt(2) = ( v_1 u_1 v_2 u_2 ... v_n u_n ) / sqrt(2), and
|
|
*> P = [ e_{n+1} e_{1} e_{n+2} e_{2} ... ].
|
|
*>
|
|
*> Given a TGK matrix, one can either a) compute -s,-v and change signs
|
|
*> so that the singular values (and corresponding vectors) are already in
|
|
*> descending order (as in DGESVD/DGESDD) or b) compute s,v and reorder
|
|
*> the values (and corresponding vectors). DBDSVDX implements a) by
|
|
*> calling DSTEVX (bisection plus inverse iteration, to be replaced
|
|
*> with a version of the Multiple Relative Robust Representation
|
|
*> algorithm. (See P. Willems and B. Lang, A framework for the MR^3
|
|
*> algorithm: theory and implementation, SIAM J. Sci. Comput.,
|
|
*> 35:740-766, 2013.)
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': B is upper bidiagonal;
|
|
*> = 'L': B is lower bidiagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JOBZ
|
|
*> \verbatim
|
|
*> JOBZ is CHARACTER*1
|
|
*> = 'N': Compute singular values only;
|
|
*> = 'V': Compute singular values and singular vectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RANGE
|
|
*> \verbatim
|
|
*> RANGE is CHARACTER*1
|
|
*> = 'A': all singular values will be found.
|
|
*> = 'V': all singular values in the half-open interval [VL,VU)
|
|
*> will be found.
|
|
*> = 'I': the IL-th through IU-th singular values will be found.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the bidiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The n diagonal elements of the bidiagonal matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (max(1,N-1))
|
|
*> The (n-1) superdiagonal elements of the bidiagonal matrix
|
|
*> B in elements 1 to N-1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VL
|
|
*> \verbatim
|
|
*> VL is DOUBLE PRECISION
|
|
*> If RANGE='V', the lower bound of the interval to
|
|
*> be searched for singular values. VU > VL.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VU
|
|
*> \verbatim
|
|
*> VU is DOUBLE PRECISION
|
|
*> If RANGE='V', the upper bound of the interval to
|
|
*> be searched for singular values. VU > VL.
|
|
*> Not referenced if RANGE = 'A' or 'I'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IL
|
|
*> \verbatim
|
|
*> IL is INTEGER
|
|
*> If RANGE='I', the index of the
|
|
*> smallest singular value to be returned.
|
|
*> 1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IU
|
|
*> \verbatim
|
|
*> IU is INTEGER
|
|
*> If RANGE='I', the index of the
|
|
*> largest singular value to be returned.
|
|
*> 1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
|
|
*> Not referenced if RANGE = 'A' or 'V'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] NS
|
|
*> \verbatim
|
|
*> NS is INTEGER
|
|
*> The total number of singular values found. 0 <= NS <= N.
|
|
*> If RANGE = 'A', NS = N, and if RANGE = 'I', NS = IU-IL+1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION array, dimension (N)
|
|
*> The first NS elements contain the selected singular values in
|
|
*> ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension (2*N,K)
|
|
*> If JOBZ = 'V', then if INFO = 0 the first NS columns of Z
|
|
*> contain the singular vectors of the matrix B corresponding to
|
|
*> the selected singular values, with U in rows 1 to N and V
|
|
*> in rows N+1 to N*2, i.e.
|
|
*> Z = [ U ]
|
|
*> [ V ]
|
|
*> If JOBZ = 'N', then Z is not referenced.
|
|
*> Note: The user must ensure that at least K = NS+1 columns are
|
|
*> supplied in the array Z; if RANGE = 'V', the exact value of
|
|
*> NS is not known in advance and an upper bound must be used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1, and if
|
|
*> JOBZ = 'V', LDZ >= max(2,N*2).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (14*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (12*N)
|
|
*> If JOBZ = 'V', then if INFO = 0, the first NS elements of
|
|
*> IWORK are zero. If INFO > 0, then IWORK contains the indices
|
|
*> of the eigenvectors that failed to converge in DSTEVX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, then i eigenvectors failed to converge
|
|
*> in DSTEVX. The indices of the eigenvectors
|
|
*> (as returned by DSTEVX) are stored in the
|
|
*> array IWORK.
|
|
*> if INFO = N*2 + 1, an internal error occurred.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup doubleOTHEReigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DBDSVDX( UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
|
|
$ NS, S, Z, LDZ, WORK, IWORK, INFO)
|
|
*
|
|
* -- LAPACK driver routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBZ, RANGE, UPLO
|
|
INTEGER IL, INFO, IU, LDZ, N, NS
|
|
DOUBLE PRECISION VL, VU
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION D( * ), E( * ), S( * ), WORK( * ),
|
|
$ Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TEN, HNDRD, MEIGTH
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0,
|
|
$ HNDRD = 100.0D0, MEIGTH = -0.1250D0 )
|
|
DOUBLE PRECISION FUDGE
|
|
PARAMETER ( FUDGE = 2.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
CHARACTER RNGVX
|
|
LOGICAL ALLSV, INDSV, LOWER, SPLIT, SVEQ0, VALSV, WANTZ
|
|
INTEGER I, ICOLZ, IDBEG, IDEND, IDTGK, IDPTR, IEPTR,
|
|
$ IETGK, IIFAIL, IIWORK, ILTGK, IROWU, IROWV,
|
|
$ IROWZ, ISBEG, ISPLT, ITEMP, IUTGK, J, K,
|
|
$ NTGK, NRU, NRV, NSL
|
|
DOUBLE PRECISION ABSTOL, EPS, EMIN, MU, NRMU, NRMV, ORTOL, SMAX,
|
|
$ SMIN, SQRT2, THRESH, TOL, ULP,
|
|
$ VLTGK, VUTGK, ZJTJI
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DDOT, DLAMCH, DNRM2
|
|
EXTERNAL IDAMAX, LSAME, DAXPY, DDOT, DLAMCH, DNRM2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DSTEVX, DCOPY, DLASET, DSCAL, DSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, SIGN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
ALLSV = LSAME( RANGE, 'A' )
|
|
VALSV = LSAME( RANGE, 'V' )
|
|
INDSV = LSAME( RANGE, 'I' )
|
|
WANTZ = LSAME( JOBZ, 'V' )
|
|
LOWER = LSAME( UPLO, 'L' )
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.( ALLSV .OR. VALSV .OR. INDSV ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.GT.0 ) THEN
|
|
IF( VALSV ) THEN
|
|
IF( VL.LT.ZERO ) THEN
|
|
INFO = -7
|
|
ELSE IF( VU.LE.VL ) THEN
|
|
INFO = -8
|
|
END IF
|
|
ELSE IF( INDSV ) THEN
|
|
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
|
|
INFO = -9
|
|
ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
|
|
INFO = -10
|
|
END IF
|
|
END IF
|
|
END IF
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N*2 ) ) INFO = -14
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DBDSVDX', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible (N.LE.1)
|
|
*
|
|
NS = 0
|
|
IF( N.EQ.0 ) RETURN
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
IF( ALLSV .OR. INDSV ) THEN
|
|
NS = 1
|
|
S( 1 ) = ABS( D( 1 ) )
|
|
ELSE
|
|
IF( VL.LT.ABS( D( 1 ) ) .AND. VU.GE.ABS( D( 1 ) ) ) THEN
|
|
NS = 1
|
|
S( 1 ) = ABS( D( 1 ) )
|
|
END IF
|
|
END IF
|
|
IF( WANTZ ) THEN
|
|
Z( 1, 1 ) = SIGN( ONE, D( 1 ) )
|
|
Z( 2, 1 ) = ONE
|
|
END IF
|
|
RETURN
|
|
END IF
|
|
*
|
|
ABSTOL = 2*DLAMCH( 'Safe Minimum' )
|
|
ULP = DLAMCH( 'Precision' )
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
SQRT2 = SQRT( 2.0D0 )
|
|
ORTOL = SQRT( ULP )
|
|
*
|
|
* Criterion for splitting is taken from DBDSQR when singular
|
|
* values are computed to relative accuracy TOL. (See J. Demmel and
|
|
* W. Kahan, Accurate singular values of bidiagonal matrices, SIAM
|
|
* J. Sci. and Stat. Comput., 11:873–912, 1990.)
|
|
*
|
|
TOL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )*EPS
|
|
*
|
|
* Compute approximate maximum, minimum singular values.
|
|
*
|
|
I = IDAMAX( N, D, 1 )
|
|
SMAX = ABS( D( I ) )
|
|
I = IDAMAX( N-1, E, 1 )
|
|
SMAX = MAX( SMAX, ABS( E( I ) ) )
|
|
*
|
|
* Compute threshold for neglecting D's and E's.
|
|
*
|
|
SMIN = ABS( D( 1 ) )
|
|
IF( SMIN.NE.ZERO ) THEN
|
|
MU = SMIN
|
|
DO I = 2, N
|
|
MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
|
|
SMIN = MIN( SMIN, MU )
|
|
IF( SMIN.EQ.ZERO ) EXIT
|
|
END DO
|
|
END IF
|
|
SMIN = SMIN / SQRT( DBLE( N ) )
|
|
THRESH = TOL*SMIN
|
|
*
|
|
* Check for zeros in D and E (splits), i.e. submatrices.
|
|
*
|
|
DO I = 1, N-1
|
|
IF( ABS( D( I ) ).LE.THRESH ) D( I ) = ZERO
|
|
IF( ABS( E( I ) ).LE.THRESH ) E( I ) = ZERO
|
|
END DO
|
|
IF( ABS( D( N ) ).LE.THRESH ) D( N ) = ZERO
|
|
*
|
|
* Pointers for arrays used by DSTEVX.
|
|
*
|
|
IDTGK = 1
|
|
IETGK = IDTGK + N*2
|
|
ITEMP = IETGK + N*2
|
|
IIFAIL = 1
|
|
IIWORK = IIFAIL + N*2
|
|
*
|
|
* Set RNGVX, which corresponds to RANGE for DSTEVX in TGK mode.
|
|
* VL,VU or IL,IU are redefined to conform to implementation a)
|
|
* described in the leading comments.
|
|
*
|
|
ILTGK = 0
|
|
IUTGK = 0
|
|
VLTGK = ZERO
|
|
VUTGK = ZERO
|
|
*
|
|
IF( ALLSV ) THEN
|
|
*
|
|
* All singular values will be found. We aim at -s (see
|
|
* leading comments) with RNGVX = 'I'. IL and IU are set
|
|
* later (as ILTGK and IUTGK) according to the dimension
|
|
* of the active submatrix.
|
|
*
|
|
RNGVX = 'I'
|
|
IF( WANTZ ) CALL DLASET( 'F', N*2, N+1, ZERO, ZERO, Z, LDZ )
|
|
ELSE IF( VALSV ) THEN
|
|
*
|
|
* Find singular values in a half-open interval. We aim
|
|
* at -s (see leading comments) and we swap VL and VU
|
|
* (as VUTGK and VLTGK), changing their signs.
|
|
*
|
|
RNGVX = 'V'
|
|
VLTGK = -VU
|
|
VUTGK = -VL
|
|
WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
|
|
CALL DCOPY( N, D, 1, WORK( IETGK ), 2 )
|
|
CALL DCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
|
|
CALL DSTEVX( 'N', 'V', N*2, WORK( IDTGK ), WORK( IETGK ),
|
|
$ VLTGK, VUTGK, ILTGK, ILTGK, ABSTOL, NS, S,
|
|
$ Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
|
|
$ IWORK( IIFAIL ), INFO )
|
|
IF( NS.EQ.0 ) THEN
|
|
RETURN
|
|
ELSE
|
|
IF( WANTZ ) CALL DLASET( 'F', N*2, NS, ZERO, ZERO, Z, LDZ )
|
|
END IF
|
|
ELSE IF( INDSV ) THEN
|
|
*
|
|
* Find the IL-th through the IU-th singular values. We aim
|
|
* at -s (see leading comments) and indices are mapped into
|
|
* values, therefore mimicking DSTEBZ, where
|
|
*
|
|
* GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN
|
|
* GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN
|
|
*
|
|
ILTGK = IL
|
|
IUTGK = IU
|
|
RNGVX = 'V'
|
|
WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
|
|
CALL DCOPY( N, D, 1, WORK( IETGK ), 2 )
|
|
CALL DCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
|
|
CALL DSTEVX( 'N', 'I', N*2, WORK( IDTGK ), WORK( IETGK ),
|
|
$ VLTGK, VLTGK, ILTGK, ILTGK, ABSTOL, NS, S,
|
|
$ Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
|
|
$ IWORK( IIFAIL ), INFO )
|
|
VLTGK = S( 1 ) - FUDGE*SMAX*ULP*N
|
|
WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
|
|
CALL DCOPY( N, D, 1, WORK( IETGK ), 2 )
|
|
CALL DCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
|
|
CALL DSTEVX( 'N', 'I', N*2, WORK( IDTGK ), WORK( IETGK ),
|
|
$ VUTGK, VUTGK, IUTGK, IUTGK, ABSTOL, NS, S,
|
|
$ Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
|
|
$ IWORK( IIFAIL ), INFO )
|
|
VUTGK = S( 1 ) + FUDGE*SMAX*ULP*N
|
|
VUTGK = MIN( VUTGK, ZERO )
|
|
*
|
|
* If VLTGK=VUTGK, DSTEVX returns an error message,
|
|
* so if needed we change VUTGK slightly.
|
|
*
|
|
IF( VLTGK.EQ.VUTGK ) VLTGK = VLTGK - TOL
|
|
*
|
|
IF( WANTZ ) CALL DLASET( 'F', N*2, IU-IL+1, ZERO, ZERO, Z, LDZ)
|
|
END IF
|
|
*
|
|
* Initialize variables and pointers for S, Z, and WORK.
|
|
*
|
|
* NRU, NRV: number of rows in U and V for the active submatrix
|
|
* IDBEG, ISBEG: offsets for the entries of D and S
|
|
* IROWZ, ICOLZ: offsets for the rows and columns of Z
|
|
* IROWU, IROWV: offsets for the rows of U and V
|
|
*
|
|
NS = 0
|
|
NRU = 0
|
|
NRV = 0
|
|
IDBEG = 1
|
|
ISBEG = 1
|
|
IROWZ = 1
|
|
ICOLZ = 1
|
|
IROWU = 2
|
|
IROWV = 1
|
|
SPLIT = .FALSE.
|
|
SVEQ0 = .FALSE.
|
|
*
|
|
* Form the tridiagonal TGK matrix.
|
|
*
|
|
S( 1:N ) = ZERO
|
|
WORK( IETGK+2*N-1 ) = ZERO
|
|
WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
|
|
CALL DCOPY( N, D, 1, WORK( IETGK ), 2 )
|
|
CALL DCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
|
|
*
|
|
*
|
|
* Check for splits in two levels, outer level
|
|
* in E and inner level in D.
|
|
*
|
|
DO IEPTR = 2, N*2, 2
|
|
IF( WORK( IETGK+IEPTR-1 ).EQ.ZERO ) THEN
|
|
*
|
|
* Split in E (this piece of B is square) or bottom
|
|
* of the (input bidiagonal) matrix.
|
|
*
|
|
ISPLT = IDBEG
|
|
IDEND = IEPTR - 1
|
|
DO IDPTR = IDBEG, IDEND, 2
|
|
IF( WORK( IETGK+IDPTR-1 ).EQ.ZERO ) THEN
|
|
*
|
|
* Split in D (rectangular submatrix). Set the number
|
|
* of rows in U and V (NRU and NRV) accordingly.
|
|
*
|
|
IF( IDPTR.EQ.IDBEG ) THEN
|
|
*
|
|
* D=0 at the top.
|
|
*
|
|
SVEQ0 = .TRUE.
|
|
IF( IDBEG.EQ.IDEND) THEN
|
|
NRU = 1
|
|
NRV = 1
|
|
END IF
|
|
ELSE IF( IDPTR.EQ.IDEND ) THEN
|
|
*
|
|
* D=0 at the bottom.
|
|
*
|
|
SVEQ0 = .TRUE.
|
|
NRU = (IDEND-ISPLT)/2 + 1
|
|
NRV = NRU
|
|
IF( ISPLT.NE.IDBEG ) THEN
|
|
NRU = NRU + 1
|
|
END IF
|
|
ELSE
|
|
IF( ISPLT.EQ.IDBEG ) THEN
|
|
*
|
|
* Split: top rectangular submatrix.
|
|
*
|
|
NRU = (IDPTR-IDBEG)/2
|
|
NRV = NRU + 1
|
|
ELSE
|
|
*
|
|
* Split: middle square submatrix.
|
|
*
|
|
NRU = (IDPTR-ISPLT)/2 + 1
|
|
NRV = NRU
|
|
END IF
|
|
END IF
|
|
ELSE IF( IDPTR.EQ.IDEND ) THEN
|
|
*
|
|
* Last entry of D in the active submatrix.
|
|
*
|
|
IF( ISPLT.EQ.IDBEG ) THEN
|
|
*
|
|
* No split (trivial case).
|
|
*
|
|
NRU = (IDEND-IDBEG)/2 + 1
|
|
NRV = NRU
|
|
ELSE
|
|
*
|
|
* Split: bottom rectangular submatrix.
|
|
*
|
|
NRV = (IDEND-ISPLT)/2 + 1
|
|
NRU = NRV + 1
|
|
END IF
|
|
END IF
|
|
*
|
|
NTGK = NRU + NRV
|
|
*
|
|
IF( NTGK.GT.0 ) THEN
|
|
*
|
|
* Compute eigenvalues/vectors of the active
|
|
* submatrix according to RANGE:
|
|
* if RANGE='A' (ALLSV) then RNGVX = 'I'
|
|
* if RANGE='V' (VALSV) then RNGVX = 'V'
|
|
* if RANGE='I' (INDSV) then RNGVX = 'V'
|
|
*
|
|
ILTGK = 1
|
|
IUTGK = NTGK / 2
|
|
IF( ALLSV .OR. VUTGK.EQ.ZERO ) THEN
|
|
IF( SVEQ0 .OR.
|
|
$ SMIN.LT.EPS .OR.
|
|
$ MOD(NTGK,2).GT.0 ) THEN
|
|
* Special case: eigenvalue equal to zero or very
|
|
* small, additional eigenvector is needed.
|
|
IUTGK = IUTGK + 1
|
|
END IF
|
|
END IF
|
|
*
|
|
* Workspace needed by DSTEVX:
|
|
* WORK( ITEMP: ): 2*5*NTGK
|
|
* IWORK( 1: ): 2*6*NTGK
|
|
*
|
|
CALL DSTEVX( JOBZ, RNGVX, NTGK, WORK( IDTGK+ISPLT-1 ),
|
|
$ WORK( IETGK+ISPLT-1 ), VLTGK, VUTGK,
|
|
$ ILTGK, IUTGK, ABSTOL, NSL, S( ISBEG ),
|
|
$ Z( IROWZ,ICOLZ ), LDZ, WORK( ITEMP ),
|
|
$ IWORK( IIWORK ), IWORK( IIFAIL ),
|
|
$ INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
* Exit with the error code from DSTEVX.
|
|
RETURN
|
|
END IF
|
|
EMIN = ABS( MAXVAL( S( ISBEG:ISBEG+NSL-1 ) ) )
|
|
*
|
|
IF( NSL.GT.0 .AND. WANTZ ) THEN
|
|
*
|
|
* Normalize u=Z([2,4,...],:) and v=Z([1,3,...],:),
|
|
* changing the sign of v as discussed in the leading
|
|
* comments. The norms of u and v may be (slightly)
|
|
* different from 1/sqrt(2) if the corresponding
|
|
* eigenvalues are very small or too close. We check
|
|
* those norms and, if needed, reorthogonalize the
|
|
* vectors.
|
|
*
|
|
IF( NSL.GT.1 .AND.
|
|
$ VUTGK.EQ.ZERO .AND.
|
|
$ MOD(NTGK,2).EQ.0 .AND.
|
|
$ EMIN.EQ.0 .AND. .NOT.SPLIT ) THEN
|
|
*
|
|
* D=0 at the top or bottom of the active submatrix:
|
|
* one eigenvalue is equal to zero; concatenate the
|
|
* eigenvectors corresponding to the two smallest
|
|
* eigenvalues.
|
|
*
|
|
Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) =
|
|
$ Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) +
|
|
$ Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 )
|
|
Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 ) =
|
|
$ ZERO
|
|
* IF( IUTGK*2.GT.NTGK ) THEN
|
|
* Eigenvalue equal to zero or very small.
|
|
* NSL = NSL - 1
|
|
* END IF
|
|
END IF
|
|
*
|
|
DO I = 0, MIN( NSL-1, NRU-1 )
|
|
NRMU = DNRM2( NRU, Z( IROWU, ICOLZ+I ), 2 )
|
|
IF( NRMU.EQ.ZERO ) THEN
|
|
INFO = N*2 + 1
|
|
RETURN
|
|
END IF
|
|
CALL DSCAL( NRU, ONE/NRMU,
|
|
$ Z( IROWU,ICOLZ+I ), 2 )
|
|
IF( NRMU.NE.ONE .AND.
|
|
$ ABS( NRMU-ORTOL )*SQRT2.GT.ONE )
|
|
$ THEN
|
|
DO J = 0, I-1
|
|
ZJTJI = -DDOT( NRU, Z( IROWU, ICOLZ+J ),
|
|
$ 2, Z( IROWU, ICOLZ+I ), 2 )
|
|
CALL DAXPY( NRU, ZJTJI,
|
|
$ Z( IROWU, ICOLZ+J ), 2,
|
|
$ Z( IROWU, ICOLZ+I ), 2 )
|
|
END DO
|
|
NRMU = DNRM2( NRU, Z( IROWU, ICOLZ+I ), 2 )
|
|
CALL DSCAL( NRU, ONE/NRMU,
|
|
$ Z( IROWU,ICOLZ+I ), 2 )
|
|
END IF
|
|
END DO
|
|
DO I = 0, MIN( NSL-1, NRV-1 )
|
|
NRMV = DNRM2( NRV, Z( IROWV, ICOLZ+I ), 2 )
|
|
IF( NRMV.EQ.ZERO ) THEN
|
|
INFO = N*2 + 1
|
|
RETURN
|
|
END IF
|
|
CALL DSCAL( NRV, -ONE/NRMV,
|
|
$ Z( IROWV,ICOLZ+I ), 2 )
|
|
IF( NRMV.NE.ONE .AND.
|
|
$ ABS( NRMV-ORTOL )*SQRT2.GT.ONE )
|
|
$ THEN
|
|
DO J = 0, I-1
|
|
ZJTJI = -DDOT( NRV, Z( IROWV, ICOLZ+J ),
|
|
$ 2, Z( IROWV, ICOLZ+I ), 2 )
|
|
CALL DAXPY( NRU, ZJTJI,
|
|
$ Z( IROWV, ICOLZ+J ), 2,
|
|
$ Z( IROWV, ICOLZ+I ), 2 )
|
|
END DO
|
|
NRMV = DNRM2( NRV, Z( IROWV, ICOLZ+I ), 2 )
|
|
CALL DSCAL( NRV, ONE/NRMV,
|
|
$ Z( IROWV,ICOLZ+I ), 2 )
|
|
END IF
|
|
END DO
|
|
IF( VUTGK.EQ.ZERO .AND.
|
|
$ IDPTR.LT.IDEND .AND.
|
|
$ MOD(NTGK,2).GT.0 ) THEN
|
|
*
|
|
* D=0 in the middle of the active submatrix (one
|
|
* eigenvalue is equal to zero): save the corresponding
|
|
* eigenvector for later use (when bottom of the
|
|
* active submatrix is reached).
|
|
*
|
|
SPLIT = .TRUE.
|
|
Z( IROWZ:IROWZ+NTGK-1,N+1 ) =
|
|
$ Z( IROWZ:IROWZ+NTGK-1,NS+NSL )
|
|
Z( IROWZ:IROWZ+NTGK-1,NS+NSL ) =
|
|
$ ZERO
|
|
END IF
|
|
END IF !** WANTZ **!
|
|
*
|
|
NSL = MIN( NSL, NRU )
|
|
SVEQ0 = .FALSE.
|
|
*
|
|
* Absolute values of the eigenvalues of TGK.
|
|
*
|
|
DO I = 0, NSL-1
|
|
S( ISBEG+I ) = ABS( S( ISBEG+I ) )
|
|
END DO
|
|
*
|
|
* Update pointers for TGK, S and Z.
|
|
*
|
|
ISBEG = ISBEG + NSL
|
|
IROWZ = IROWZ + NTGK
|
|
ICOLZ = ICOLZ + NSL
|
|
IROWU = IROWZ
|
|
IROWV = IROWZ + 1
|
|
ISPLT = IDPTR + 1
|
|
NS = NS + NSL
|
|
NRU = 0
|
|
NRV = 0
|
|
END IF !** NTGK.GT.0 **!
|
|
IF( IROWZ.LT.N*2 .AND. WANTZ ) THEN
|
|
Z( 1:IROWZ-1, ICOLZ ) = ZERO
|
|
END IF
|
|
END DO !** IDPTR loop **!
|
|
IF( SPLIT .AND. WANTZ ) THEN
|
|
*
|
|
* Bring back eigenvector corresponding
|
|
* to eigenvalue equal to zero.
|
|
*
|
|
Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) =
|
|
$ Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) +
|
|
$ Z( IDBEG:IDEND-NTGK+1,N+1 )
|
|
Z( IDBEG:IDEND-NTGK+1,N+1 ) = 0
|
|
END IF
|
|
IROWV = IROWV - 1
|
|
IROWU = IROWU + 1
|
|
IDBEG = IEPTR + 1
|
|
SVEQ0 = .FALSE.
|
|
SPLIT = .FALSE.
|
|
END IF !** Check for split in E **!
|
|
END DO !** IEPTR loop **!
|
|
*
|
|
* Sort the singular values into decreasing order (insertion sort on
|
|
* singular values, but only one transposition per singular vector)
|
|
*
|
|
DO I = 1, NS-1
|
|
K = 1
|
|
SMIN = S( 1 )
|
|
DO J = 2, NS + 1 - I
|
|
IF( S( J ).LE.SMIN ) THEN
|
|
K = J
|
|
SMIN = S( J )
|
|
END IF
|
|
END DO
|
|
IF( K.NE.NS+1-I ) THEN
|
|
S( K ) = S( NS+1-I )
|
|
S( NS+1-I ) = SMIN
|
|
IF( WANTZ ) CALL DSWAP( N*2, Z( 1,K ), 1, Z( 1,NS+1-I ), 1 )
|
|
END IF
|
|
END DO
|
|
*
|
|
* If RANGE=I, check for singular values/vectors to be discarded.
|
|
*
|
|
IF( INDSV ) THEN
|
|
K = IU - IL + 1
|
|
IF( K.LT.NS ) THEN
|
|
S( K+1:NS ) = ZERO
|
|
IF( WANTZ ) Z( 1:N*2,K+1:NS ) = ZERO
|
|
NS = K
|
|
END IF
|
|
END IF
|
|
*
|
|
* Reorder Z: U = Z( 1:N,1:NS ), V = Z( N+1:N*2,1:NS ).
|
|
* If B is a lower diagonal, swap U and V.
|
|
*
|
|
IF( WANTZ ) THEN
|
|
DO I = 1, NS
|
|
CALL DCOPY( N*2, Z( 1,I ), 1, WORK, 1 )
|
|
IF( LOWER ) THEN
|
|
CALL DCOPY( N, WORK( 2 ), 2, Z( N+1,I ), 1 )
|
|
CALL DCOPY( N, WORK( 1 ), 2, Z( 1 ,I ), 1 )
|
|
ELSE
|
|
CALL DCOPY( N, WORK( 2 ), 2, Z( 1 ,I ), 1 )
|
|
CALL DCOPY( N, WORK( 1 ), 2, Z( N+1,I ), 1 )
|
|
END IF
|
|
END DO
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DBDSVDX
|
|
*
|
|
END
|
|
|